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a b s t r a c t

Particulate suspensions inhaled by humans are typically dilute and hence interactions
between particles can be neglected. In such cases conventional Euler–Lagrange or Euler–
Euler methods are suitable to simulate micron- or nano-particle transport and deposition
in human respiratory systems. However, when challenging conditions, such as large
pressure differentials, high velocity gradients and/or intense particle collisions, exist,
alternative approaches for numerical analysis are required to capture fluid–particle,
particle–particle, and particle–wall interactions. In the present study, the dense discrete
phase model (DDPM) in conjunction with the discrete element method (DEM) have been
employed to simulate micron–particle transport, interaction and deposition dynamics in
different triple bifurcations (i.e., G3–G6, G6–G9, and G9–G12), using ANSYS Fluent 14.0
enhanced by user-defined functions (UDFs). In light of the relatively high computational
cost when employing DDPM–DEM for such simulations throughout the human respira-
tory system, it may be necessary to combine different computational fluid–particle
dynamics (CF–PD) models based on the local intensity of particle–particle interactions.
Thus, the validity and necessity of the DDPM–DEM approach for different lung airway
generations were numerically investigated, considering new parametric criteria for the
use of most suitable numerical models. Specifically, the relative intensities of three major
particle deposition mechanisms (i.e., inertial impaction, secondary-flow effect, and
particle–particle-interaction impact) in idealized lung-airway segments were investi-
gated. As a result, a new criterion for CF–PD model combination in terms of a relationship
between inlet-particle stacking-volume fraction, ϕ, and percentage-of-fate changing
particles, Δβp , is proposed. Visualizations of the fluid–particle dynamics in bifurcating
airways have been provided as well. Results of this study pave the way for accurate and
cost-effective CF–PD simulations of lung-aerosol dynamics, aiming at the improvement of
respiratory dose estimation for health risk assessment in case of toxic particles and for
treatment options in case of therapeutic particles.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate simulation of airflow structures and related aerosol deposition in realistic models of the human respiratory
system, using computational fluid–particle dynamics (CF–PD), are of fundamental importance (Kleinstreuer & Feng, 2013).
All rights reserved.

nical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.

www.sciencedirect.com/science/journal/00218502
www.elsevier.com/locate/jaerosci
http://dx.doi.org/10.1016/j.jaerosci.2014.01.003
http://dx.doi.org/10.1016/j.jaerosci.2014.01.003
http://dx.doi.org/10.1016/j.jaerosci.2014.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaerosci.2014.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaerosci.2014.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaerosci.2014.01.003&domain=pdf
mailto:ck@ncsu.edu
http://dx.doi.org/10.1016/j.jaerosci.2014.01.003


Nomenclature

dp,eq equivalent particle diameter
dp particle diameter
Din inlet diameter
DE deposition efficiency
Eeq equivalent Young's modulus

F
!

c;ij inter-particle contact force between particle i
and particle j

F
!n

c;ij normal contact force between particle i and
particle j

F
!t

c;ij tangential contact force between particle i and
particle j

F
!

D;i drag force acting on particle i
F
!

pf ;i fluid–particle interaction forces acting on par-
ticle i

F
!

g;i the gravity of particle i
G the particle's shear modulus
kn normal stiffness
kv the number of particles in the specific

mesh cell
Mlayer initial stacking-layer number of particles
Nin the total number of particles released at

the inlet
Rsl
�!

volumetric fluid–particle interaction force
Rein inlet Reynolds number
St Stokes number
Δtp discrete-phase time step

v!pn;ij normal component of the relative velocity
v!p;ij between particle i and particle j

v!pt;ij tangential component of the relative velocity
vector between particle i and particle j

Greeks

αf fluid volume fraction
Δβp percentage of fate changing particles
δ unit tensor
δnij normal overlap distance between contacting

particle i and particle j
ε the coefficient of restitution
ηnij normal damping coefficient
s Poisson's ratio
τ!f local stress tensor
ϕ inlet particle stacking volume fraction

Subscripts and superscripts

c contact force
f fluid phase
i particle index i
in inlet
j particle index j
n normal direction
p particulate phase
t tangential direction
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For the inhalation of micron particles, most will typically deposit before passing through the trachea due to inertial
impaction and strong turbulent dispersion in the oral region and nasal cavities. The remaining particle suspension is dilute
when entering the tracheobronchial airways so that particle–particle interacting mechanisms can be neglected. In such
cases conventional Euler–Lagrange methods are accurate for the prediction of particle transport and deposition in lung
airways. However, when high concentrations of air pollutants are inhaled or dense drug particle suspensions are delivered
for lung or systemic disease targeting, particle–particle and particle–wall interactions are the dominant features which
strongly influence particle transport and deposition in lung airways (Aljuri et al., 2012; Kleinstreuer et al., 2008; Tong et al.,
2010). Conventional Euler–Lagrange methods (i.e., discrete phase models (DPMs)) are not suitable for dense fluid–particle
flows because of the restriction on the volume fraction of the discrete phase. Such numerical DPMs do not consider
explicitly the contact between the fluid, particles and wall surfaces with respect to particle inertial and material properties.
Additionally, two-way coupling is necessary for dense particle-suspension flows in complex conduits. The use of the discrete
element method (DEM) will ensure realistic particle flow. It was first proposed by Cundall & Strack (1979), based on
molecular dynamics. The most attractive feature of DEMs is the highly efficient algorithms of the contact detection and
contact force calculation between arbitrary shaped particles (Wang et al., 2010). The dense discrete phase model (DDPM)
combined with DEM is one of the CF–PD modeling approaches discussed by Tsuji et al. (1992, 1993). Specifically, with CFD–
DEM which is similar to DDPM–DEM, the motion of translating and interacting particles is described by DEM, based on
Newton's second law, while the DDPM describes the fluid flow field, determined by a solution of the local averaged Navier–
Stokes equations. The coupling between the discrete and continuous phases can be achieved via an interphase interaction
term in the Navier–Stokes equation (Kafui et al., 2002). Thus, in DDPM–DEM the motion of each particle is analyzed by
incorporating the contact forces and the moments due to the neighboring particles. This method has gained a prominent
application in the modeling of fluidized beds (Alobaid et al., 2012; Li et al., 2012; Neuwirth et al., 2012), as well as multi-
scale strategy achievement which combines different numerical models that describe gas–solid flows at different levels of
detail (e.g., DNS, DEM, and DPM) (Di Renzo et al., 2011; Van der Hoef et al., 2008). The coupling algorithm of DDPM–DEM is
presented by Fig. 1. More recent applications include the investigation of dense powder dispersion in drug-aerosol inhalers
(Tong et al., 2010, 2012), as well as pulmonary drug delivery, as discussed by Chen et al. (2012). Specifically, its application to
inhaler development has largely been focused on investigating pharmaceutical agglomerate break-up in dry powder
inhalers (Wong et al., 2012). For example, Tong et al. (2010, 2012) recently employed ANSYS Fluent with in-house user-
defined functions (UDFs) to powder dispersion in a commercial Aerolizers Inhaler model. Chen et al. (2012) employed the
one-way and two-way DDPM–DEM methods for particle transport and deposition in a pulmonary airway bifurcation. They



Fig. 1. Coupling and information exchange between DDPM solver and DEM solver.
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validated the DDPM–DEM method by deposition-efficiency comparisons between their numerical results and experimental
data (Kim & Fisher, 1999) in Weibel's double bifurcation airway geometry (G3–G5), using spherical micron particles with
diameters ranging from 3 μm to 7 μm. However, the particulate inlet volume fraction they assumed was below 1.85% (i.e.,
10,000 particles with dp¼10 μm generated near the inlet), a situation where particle–particle interactions are actually
negligible. Hence, the application of DDPM–DEM with two-way coupling for dense particle suspension flow has not been
systematically investigated.

Because DDPM–DEM is a computationally taxing method to apply, especially for lung aerosol dynamics simulations
(Feng, 2013), it is desirable to reduce the CPU cost. For example, by resorting to other numerical approaches when
appropriate, e.g., conventional Euler–Lagrange methods at locations with low particle–volume fractions. This, however, will
require a criterion when and where to combine the different models for accurate and effective simulations.

In this paper, DDPM–DEM was developed and employed for the simulation of particle transport and deposition in
different bifurcating airways. Focusing on laminar, incompressible flow, the time evolution of particle transport, the
resulting deposition efficiencies, and particle transport patterns were investigated. Specifically, the two-way DDPM–DEM,
one-way DPM, and two-way DPM were used to simulate particulate suspensions in different triple-bifurcation lung airway
geometries (i.e., G3–G6, G6–G9, and G9–G12) for mouth inlet flow rates of 30 L/min and 60 L/min. Parametric impact
analyses on particle transport and deposition patterns were investigated as a function Stokes number, inlet Reynolds
number, and particle-to-inlet-diameter ratio, dp/Din. In addition, a criterion for judging the necessity of employing DDPM–

DEM rather than just DPM was introduced for the triple-bifurcation airways, representing different generations.

2. Theory

2.1. Governing equations for the continuous phase (DDPM)

For gas–solid two-phase flow, the governing equations for the continuous phase in the DDPM–DEM method are
conservation of mass and momentum of the local mean variables over a cell, which can be written as follows (Johnson, 1998;
Loth, 2008).
Continuity equation:

∂ðαf ρf Þ
∂t

þ∇U ðαf ρf vf!Þ¼ 0 ð1Þ

and
Momentum equation:

∂ðρf αf vf!Þ
∂t

þ∇U ðαf ρf vf!U vf
!Þ¼ �αf∇pþ∇U ðαf τ!f Þþαf ρf g

!� Rsl
�! ð2Þ
Here, αf is the fluid volume fraction and τ!f is the local stress tensor given by Hilton & Cleary (2011) as

τ!f ¼ μf ∇vf
!þ∇vf

!tr� 2
3
∇U vf

!
� �

δ

� �
ð3Þ
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where δ is the unit tensor. In Eq. (2) Rsl
�!

is the volumetric fluid–particle interaction force. The “averaged-discrete-phase-
drag” method can be employed to calculate Rsl

�!
as

Rsl
�!¼ ∑kV

i ¼ 1 F
!

D;i

ΔV
ð4Þ

where index kv is the number of particles in the specific mesh cell, ΔV is the volume of the current mesh cell, and F
!

D;i is the
drag force acting on particle i.

2.2. Translational equation for the discrete phase (DEM)

In this study, only translational motion of the dense particulate discrete phase was considered:

mp;i
d v!p;i

dt
¼∑

j
F
!

c;ijþ F
!

pf ;iþ F
!

g;i ð5Þ

where F
!

c;ij are the inter-particle contact forces, F
!

pf ;i are fluid–particle interaction forces acting on particle i, and F
!

g;i is the
gravity of particle i. Specifically, particle–particle contact and interaction schematics are shown in Fig. 2(a) and (b).

F
!

c;ij ¼ F
!n

c;ijþ F
!t

c;ij ð6Þ

F
!

pf ;i ¼ F
!

D;i ð7Þ

Here, F
!n

c;ij and F
!t

c;ij are the normal and tangential contact forces between particles i and j; and F
!

D;i is the drag force

acting on particle i. Proper models and expressions for F
!n

c;ij, F
!t

c;ij, and F
!

D;i were selected to achieve simulation accuracy and
computational economy.

2.2.1. Normal contact force
The Hertz–Mindlin no-slip model (see Fig. 2(b)) was employed for modeling the normal contact force (Crowe et al., 2011;

Ren et al., 2011). Describing particle contacts as damped harmonic oscillators, the contact force can be expressed as

F
!n

c;ij ¼ F
!

cn;ijþ F
!

dn;ij ð8Þ
Fig. 2. Particle–particle interaction diagrams: (a) particle–particle contact overlap; (b) sketch of simplified Hertz–Mindlin contact model.
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where

F
!

cn;ij ¼ �knδ
3=2
nij n!ij ð9Þ

and

F
!

dn;ij ¼ �ηnij v
!

pn;ij ð10Þ

In Eq. (9), δnij is the normal overlap distance between contacting particle i and particle j; kn is the normal stiffness which
can be expressed, based on Hertzian contact theory, as

kn ¼
4
3
Eeq

ffiffiffiffiffiffiffiffiffiffi
dp;eq
2

r
ð11Þ

Here, Eeq is the equivalent Young's modulus and dp;eq is the equivalent particle diameter. The two parameters are defined
as

Eeq ¼
1�s2i
Ei

þ
1�s2j
Ej

 !�1

ð12Þ

and

dp;eq ¼
dp;iþdp;j
2dp;idp;j

� ��1

ð13Þ

in which s is Poisson's ratio.
In Eq. (10), ηnij is the normal damping coefficient which can be given by a revised correlation of Raji (1999). It is based on

the analytical relationship between the normal damping coefficient ηnij and the coefficient of restitution ε (0rεr1) (Crowe
et al., 2011; Tsuji et al., 1993):

ηnij ¼ �
ffiffiffi
5

p
ln εffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2þ ln2 ε
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

meqkn
q

δ1=4nij ð14Þ

where meq is the equivalent particle mass:

meq ¼
1

mp;i
þ 1

mp;j

� ��1

ð15Þ

v!pn;ij is the normal component of the relative velocity v!p;ij between particle i and particle j. v!pn;ij is defined as

v!pn;ij ¼ ð v!p;ij U n!ijÞ n!ij ð16Þ

where v!p;ij is defined as

v!p;ij ¼ v!p;j� v!p;i ð17Þ
2.2.2. Tangential contact force
The friction collision law was used for modeling the tangential contact force which is based on the Coulomb friction law

(Feng, 2013), i.e.,

F
!t

c;ij ¼ μf riction F
!n

c;ij
v!pt;ij

j v!pt;ijj

�����
����� ð18Þ

where v!pt;ij is the tangential component of the relative velocity vector between particle i and particle j; v!pt;ij is defined as

v!pt;ij ¼ ð v!p;ij � n!ijÞ � n!ij ¼ v!p;ij� v!pn;ij ð19a;bÞ

The friction coefficient μf riction is related to the magnitude of the relative tangential velocity vector j v!pt;ijj (Armstrong &
de Wit, 1996).

2.2.3. Drag force
For spherical particle i, the drag force “uniform Newtonian fluid flow” can be expressed as

F
!

D;i ¼
1
2
CD

πd2p;i
4

ρf ð v!p;i� v!f Þj v!p;i� v!f j ð20Þ
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where for the drag coefficient the combination of Ergun (1952) and Wen & Yu (1966) has been widely used. In the present
study for micron particles, the drag coefficient is

CD ¼

24
Rep

αfRepo0:5

24
αf Rep

ð1þ0:15α0:687f Re0:687p Þ 0:5oαfRepo1000

0:44 αfRep41000

8>>><
>>>: ð21Þ

Rep ¼
ρf j v!f � v!pjdp

μf
ð22Þ

It is worth mentioning that for micron particles with dpZ10 μm, the Cunningham correction factor is negligible.

2.3. Geometry and mesh

A representative triple bifurcation bronchial airway model was selected for this study (see Fig. 3(a) and (b)). The
dimensions of the triple bifurcating geometry are representative for adults with a lung volume of 3500 mL. To represent
bifurcating airways starting from different generations, the triple bifurcating airway geometry was scaled to duplicate the
hydraulic diameter D1 of the first bifurcation of different generations. For example, D1¼0.6 cm represents the G3–G6
bifurcating lung airways, while D1¼0.026 cm represents the G6–G9 bifurcating lung airways, etc.

For the numerical simulation a structured, multi-block, body-fitted hexahedral mesh was developed (see Fig. 3(b)). Mesh
independence tests have been successfully executed and presented in published papers (e.g., Zhang & Kleinstreuer, 2001).
The final mesh contained 628,712 cells, 655,822 nodes, and 1,912,466 faces.
Fig. 3. (a) Geometry and block structure of Weibel's triple bifurcation geometry; (b) finite volume mesh.
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2.4. Boundary conditions

2.4.1. Parabolic inlet velocity
To avoid entrance effects for numerical model validation, a fully-developed (parabolic) velocity was employed at the

inlet, which was created via an in-house user-defined function (UDF) program (Feng, 2013). The averaged inlet velocity was
determined from inhalation flow rates at the mouth, i.e., either 30 L/min or 60 L/min. To facilitate the determination of inlet
conditions, two assumptions were introduced:
(1)
Tabl
Com
(Rein

1-
2-
DD
The lung morphology is identical to the idealized model proposed by Weibel (1963).

(2)
 Mass flow rate in each branch at the same generation is evenly distributed.
2.4.2. Random-parabolic particle injection
In order to approximate realistic particle-inlet conditions (Kim & Fisher, 1999), a random-parabolic particle distribution

was used at the inlet. Specifically, particle position generation was achieved via an in-house Matlab code with which
particles are placed randomly (Feng, 2013). When employing DDPM–DEM, to avoid artificial initial contact forces between
particles, a re-alignment mechanism was activated during the particle generation process. For example, if the initially
assigned position of the particle would cause an overlap with any other physical element in the flow domain (i.e., other
particles or boundaries), the code will abandon the position and try to assign another one. The maximum number of
attempts to place a particle was 20. The effective particle diameter ranged from 4 μm to 10 μm. The particle density varied
with the Stokes number, which ranged from 0.037 to 0.125. In order to have dilute as well as dense particle suspension
flows, the inlet particle stacking volume fraction was changed from 2% to 30%.

2.4.3. Ideal particle-trapping wall and uniform pressure outlets
The particle–wall interaction boundary condition was assumed to be a “100% trapped wall”, because of the existence of

mucus layers which coat the inner wall of lung airways. Also, uniform (zero) gage pressure was applied at the terminal
outlets.

2.5. Validity and necessity of DDPM–DEM in airway bifurcations

The potential computational cost of DDPM–DEM is very high (see Table 1). Clearly, using two-way DDPM–DEM requires
much more CPU time (i.e., O(10)–O(1000)) when compared to one-way DPM or two-way DPM. Hence, for future nano/
micron-particle transport and deposition simulations when considering the whole human respiratory system, the validity
and necessity of DDPM–DEM combined CF–PD models need to be evaluated. Furthermore, to establish criteria for the model
combination between DDPM–DEM and DPM, it is essential to investigate the predicted differences of DE between using
DDPM–DEM and DPM, and find out factors which have a significant impact on the DE differences.

The deposition efficiency (DE) is a function of six variables:

DE¼ f ðρp; dp;Din;Vin ;Nin;MlayerÞ ð24Þ
where Nin is the total number of particles released at the inlet and Mlayer is the initial stacking layer number of the particles.
Using Buckingham's pi-theorem, three independent dimensionless parameters can be proposed to replace the six variables
which then represent the DE's functional relationship. Those dimensionless parameters are introduced for quantitative
analyses and for choosing different two-phase modeling approaches (i.e., DDPM–DEM, DPM, etc.). Specifically, the three
dimensionless parameters are the Stokes number, the airflow inlet Reynolds number, and a newly defined particle-phase
parameter ϕ (initial fluidized bed voidage is 1�ϕ). The inlet particle stacking volume fraction (PSVF) ϕ is given by

ϕ¼ 2Nind
2
p

3MlayerD
2
in

ð25Þ

Hence, Eq. (24) can be rewritten as

DE¼ f ðRein; St;ϕÞ ð26Þ
e 1
putational single-CPU time (in hour) comparisons between one-way DPM, two-way DPM, and DDPM–DEM for selected cases in the G6–G9 geometry
¼1000, 0.037rStr0.125, number of particle released¼10,000).

St¼0.037 St¼0.067 St¼0.095 St¼0.125

way DPM 0.064 0.061 0.060 0.060
way DPM 6.26 4.87 3.98 3.59
PM–DEM 109.34 90.52 79.67 74.76
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Furthermore, the percentage of fate changing particles (PFCP), Δβp, is introduced as the quantity to evaluate the impact of
different numerical methods on the deposition efficiency. The PFCP is defined as

Δβp ¼
Ndep;DEM�Ndep;DPM

Nin
ð27Þ

where Ndep;DEM is the number of deposited particles using DDPM–DEM, and Ndep;DPM is the deposited particle number
using DPM.

2.6. Numerical setup

The coupling algorithm of DDPM–DEM considering particle–particle interactions has been documented by Feng (2013).
The governing equations, subject to appropriate boundary conditions, were numerically solved by a commercial finite-
volume based program, i.e., ANSYS Fluent 14.0 (ANSYS Inc., Canonsburg, PA) enhanced by in-house user-defined functions
(UDFs). The numerical simulations were performed on a local Dell Precision T3500 workstation with 12 GB RAM and four
3.33 GHz CPUs as well as a local Dell Precision T7500 workstation with 40 GB RAM and twelve 3.33 GHZ CPUs. The typical
single-processor running time of two-way coupling DDPM–DEM for fluid flow and particle transport under steady-state
inlet conditions lasted from 72 to 168 h, when considering different inlet Reynolds numbers and different triple bifurcation
geometries.

In the present study, the discrete-phase time step Δtp was set smaller than 50% of the characteristic time τc (i.e., the
Rayleigh time) that corresponds to a typical contact time between colliding particles (O'Sullivan & Bray, 2004), i.e.,

Δtpr0:5τc ¼
0:5πrp

0:163sþ0:877

ffiffiffiffiffi
ρp
G

r
ð28Þ

where G is the particle shear modulus, and s is the Poisson's ratio. The physical and numerical parameters for particle–
particle interactions were identical to those selected by Chen et al. (2012). Laminar flow was assumed since Reynolds
number is less than 2000 from G3 to G12 when the mouth inlet flow rate is less than 60 L/min.

3. Model validations and comparisons

Currently no experimental data sets are available for the dynamics of dense micron particulate suspensions in bifurcating
lung airways. Besides, only one journal paper (Chen et al., 2012) published before this study applied DDPM–DEM method in
lung aerosol dynamics research. Therefore, it is also necessary to see the importance of particle–particle interactions on
particle deposition efficiencies in both dilute and dense particle suspensions. Hence for DDPM–DEM model validations,
experimental data of Kim & Fisher (1999) as well as numerical simulation results of Chen et al. (2012) for micron-particle
deposition in G3–G6 airways from dilute particle suspensions were employed. Figure 4(a) and (b) show that the deposition
efficiency (DE) is an exponential function of the Stokes number, which coincides with published observations (e.g., Comer
et al., 2000; Zhang & Kleinstreuer, 2001). The relatively small differences between experimental data (Kim & Fisher, 1999)
and the present numerical study can be attributed to:
(1)
 experimental uncertainties;

(2)
 small discrepancies between the computational geometry (Zhang & Kleinstreuer, 2001) and experimental glass tube

model (Kim & Fisher, 1999);

(3)
 higher experimental DE, induced by turbulent flow regime, as the experimental Reynolds number range was 283–4718,

which extended to turbulent airflow; and

(4)
 exclusion of the coagulation effect on DE in the present numerical simulation studies.
Compared with our numerical simulation results using one-way DPM and two-way DPM, DDPM–DEM predicted slightly
lower DE-values in the 1st bifurcation and 2nd bifurcation. The possible explanation is that the particle–particle contact
forces provide accelerations to some particles, avoiding impaction and/or sedimentation. A similar discovery was reported
by Cui (2012), who mentioned that using a two-way coupling method provides lower deposition efficiencies of sub-micron
and micron particles compared to one-way DPMs. It can be also observed that the predicted “DE difference” between
DDPM–DEM and DPM becomes more noticeable when the Stokes number increases (see Fig. 4(a) and (b)). This is because a
higher Stokes number indicates a greater ability of particles to cross laminar flow layers and collide with other particles.
Thus, at higher Stokes numbers more particles will be influenced by particle–particle interactions, leading via the use of
DDPM–DEM to different results when compared to using DPM (i.e., the basic Euler–Lagrange approach).

Not surprising, numerical results based on either DDPM–DEM or DPM show a good agreement with each other (see Fig. 4(a)
and (b)). Specifically, with the maximum particulate volume fraction of just 1.85%, the discrete phase is dilute, and hence any
particle–particle interaction frequency should be extremely low. Therefore, DDPM–DEM and DPM should provide very similar DE
distributions in G3–G6. Nevertheless, for the second bifurcation (Fig. 4(b)), measurable differences in DE-values appear for
St40.08 when employing DDPM–DEM due to increased occurrences of particle–particle interaction.



Fig. 4. Comparisons between computational data using different numerical methods and measured particle deposition efficiency correlations (Kim &
Fisher, 1999): (a) for the first bifurcation (G3); (b) for the second bifurcations (G4).
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4. Results and discussion

Employing two-way DDPM–DEM, one-way DPM and two-way DPM, dilute and dense particulate suspensions in different triple
bifurcating lung airway geometries (i.e., G3–G6, G6–G9, and G9–G12) were simulated. Of interest is physical insight of particle
transport patterns and the resulting deposition efficiencies determined by interactions between particles and airflows when using
DDPM–DEM compared to DPMs. The particle diameter is from 4 μm to 10 μm. The particle density varies with the Stokes number,
which varies from 0.037 to 0.125. The particulate volume fraction of the initial particle distribution ranges from 2% to 30%. The
initial particle velocity was assumed to be equal to the local airflow velocity. Other boundary conditions are discussed in Section 2.4.

4.1. Comparisons of total deposition efficiency predictions using DDPM–DEM Vs. DPM

Focusing on the relationship between inlet particle stacking volume fraction (PSVF) ϕ and percentage of fate changing
particles (PFCP) Δβp (see Eqs. (25) and (27)), we investigated particle transport and deposition in different bifurcating



Fig. 5. Percentage of fate changing particles Δβp vs. inlet particle stacking volume fraction ϕ in bifurcating airways with different generations for a mouth
inlet flow rate of Qin¼30 L/min.
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generations with the inlet velocities derived from the same mouth-inlet flow rate, i.e., 30 L/min. The relationship between
Δβp and ϕ under the same mouth-inlet flow rate condition is more instructive for the guidance of choosing different
methods. Additionally, the Mlayer is assumed to be equal to 1. The relationship between the PFCP, Δβp, and PSVF, ϕ, in triple
bifurcating airways with different generations under the mouth inlet flow rate Qin¼30 L/min is shown in Fig. 5.

In terms of deposition efficiency predictions for micron particles in the idealized lung airways, it is evident that using just
DPM may very slightly over-predict the DEs from G3 to G6 and significantly under-predict the DEs from G6–G9 and G9–G12.
It demonstrates that particle–particle interactions must be considered for accurate DE predictions when ϕ40.1. Specifically,
with the increase in ϕ from G3–G6 to G9–G12, Δβp increases as well, indicating that the influence of particle–particle
interaction on the particle deposition efficiency becomes stronger. Furthermore, in G6–G9 and G9–G12 with the increase in
Stokes number, Δβp also increases. As mentioned, the reason is that at higher Stokes numbers more particles will be
influenced by the particle–particle interactions, requiring the use of DDPM–DEM. As a quantitative example, assuming that
DDPM–DEM becomes necessary when Δβp is larger than 1%, it can be observed from Fig. 5 that when the inlet particle
stacking volume fraction is larger than, say, 15%, Δβp is larger than 1% (see the orange dashed line circle in Fig. 5). It should
be noted that for particle transport and deposition with other inlet and initial conditions in human lung airways, model
combination criteria may vary.

4.2. Comparisons of regional deposition efficiency predictions using DDPM–DEM Vs. DPM

Setting St¼0.125 as an example, regional deposition efficiency (RDE) comparisons, using DDPM–DEM vs. one-way DPM
in G6–G9 and G9–G12, are shown in Fig. 6(a) and (b). The major predictive DE differences occur in the first bifurcations of
both geometries. This is because of the relatively high particulate volume fractions, indicating a stronger influence of
particle–particle interaction on particle deposition patterns. Although the local particulate volume fraction will be reduced
as the particles move downstream, larger differences can still be observed in the 2nd bifurcation of G9–G12 rather than in
G6–G9;again, in part due to particle–particle interactions. Also, one-way DPM provides higher DE than DDPM–DEM in the
third bifurcations, both in G6–G9 and G9–G12. Such a phenomenon is probably due to the particle–particle interactions
which allows depositing particles to re-suspend into the airway stream and hence migrate to deeper lung regions. In the
third bifurcations of G9–G12, particles deposit more evenly in different branches rather than in G6–G9. This is because of
the dominant viscous airflow effect in higher (smaller) generations, while primary particle impaction at lower airflow
velocities is of little importance. Based on the RDE prediction differences using DDPM–DEM vs. DPM, it can be concluded
that the DDPM–DEM approach provides extensive particle transport and interaction simulation results, which makes this
methodology more realistic than just using DPM.

4.3. Particle dynamics in triple bifurcation units

Compared with one-way DPM, the fully-coupled DDPM–DEM can provide three-dimensional particle dynamics in
different triple bifurcation airways over time. Snapshots of particle distributions in G6–G9 bifurcating lung airways at
St¼0.125 and a mouth inlet flow rate of Qin¼30 L/min are shown in Fig. 7(a)–(i) demonstrate air–particle and particle–
particle interactions.



Fig. 6. Local particle deposition efficiency comparisons using different numerical methods in different triple bifurcating lung airways with mouth inlet flow
rate Qin¼30 L/min (a) G6–G9 (b) G9–G12.
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In order to depict the particle transport dynamics, 10,000 random-parabolic distributed particles with dp¼10 μm were
released at t¼0 s. At t¼0.0002 s (see Fig. 7(a)), the particle cloud appears as a paraboloid due to the convection of the
parabolic air velocity profile. As marked by the red dashed line in Fig. 7(a), some particles obtained extra momentum during
the particle–particle collisions, overshooting the paraboloidal frontier of the particle cloud. At t¼0.0015 s, the mainstream
of the particle cloud impacts the first bifurcation point (carinal ridge) and intense particle–particle interactions occur near
the divider (see the black dashed circle in Fig. 7(b)). From t¼0.0015 s to 0.0035 s, due to the skewed secondary flows (Feng,
2013), the particle cloud splits and splashes downstream into the daughter tubes (see Fig. 7(c)). At t¼0.0060 s, with
particles entering the third bifurcation, some particles are still in G6, moving with lower velocities. Those particles are
marked inside the red dashed ellipse near the inlet in Fig. 7(d). At t¼0.0085 s, the frontier of the particle cloud, which just
has reached G8.1 (see Fig. 7(e)), splits due to the secondary flow effect. Such a phenomenon can be also observed in the
parent tube of G8.4. From t¼0.0120 s to 0.0500 s (see Fig. 7(f)–(i)), the initial particle cloud gradually spreads downstream
and is distributed throughout the entire bifurcating airways. At t¼0.0500 s (see Fig. 7(i)) more than 90% of the particles
escaped or deposited in the bifurcating airways, while the rest are particles near the wall, moving slowly. At t¼0.0935 s, less
than 1% of the injected particles are still moving in G6–G9, which indicates the formation of the particle deposition pattern.
As the particles travel towards the outlets, the particulate volume fraction will become lower. Hence, quite similar transport
characteristics can be observed when compared to using only DPM.

4.4. Particle deposition mechanisms and local deposition efficiencies

Figure 8(a)–(d) show the local particle deposition patterns in G6–G9 and G9–G12 at different Stokes numbers and inlet
Reynolds numbers. For values higher than St¼0.125 or Rein¼262, the concentrated particle deposition near bifurcating
points demonstrate that direct impaction is the dominant deposition mechanism. Meanwhile, for values lower than
St¼0.037 or Rein¼55, the local secondary flow effect and particle–particle interaction effect become significant, leading to



Fig. 7. Time evolution for volumetric particle pulse in G6–G9 bifurcating lung airway for St¼0.125, Qin¼30 L/min, and dp¼10 μm: (a) t¼0.0002 s;
(b) t¼0.0015 s; (c) t¼0.0035 s; (d) t¼0.0060 s; (e) t¼0.0085 s; (f) t¼0.0120 s; (g) t¼0.0200 s; (h) t¼0.0300 s; (i) t¼0.0500 s. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)
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more evenly distributed particle deposition patterns. Combined with the particle transport discussed in Section 4.3, the
major particle deposition mechanisms in bifurcating lung airways from G3 to G12 can be summarized as follows:
(1)
 deposition near bifurcating points due to direct inertial impaction;

(2)
 wall deposition due to 3-D secondary flow effects; and

(3)
 wall deposition due to particle–particle (elastic) contact forces.
The local deposition patterns vary among cases with different St and Rein combinations (see Fig. 8(a)–(d)). Although the
differences in total deposition efficiency are not noticeable between Rein¼55 and 262 at the same Stokes numbers (e.g.,
St¼0.037 and 0.125), the local deposition patterns of the two groups differ from each other. For example, at Rein¼55
particles deposit more evenly in both G6–G9 and G9–G12. In contrast, depositing particles at Rein¼262 are more
concentrated at bifurcating points due to the stronger inertial impaction effect.

4.5. Parametric impacts on particle deposition efficiencies in different triple bifurcation units

While Fig. 8(a)–(d) show the local particle deposition patterns for different St and Rein numbers, Fig. 9 depicts the total
deposition efficiency (TDE) as a function of Stokes number and inlet Reynolds number in G3–G6, G6–G9, and G9–G12. In
fact, TDE is an exponential function of the Stokes number because more particles deposit due to the stronger direct inertial
impact effect. Given a Stokes number, the TDE data in Fig. 9 indicate that Rein has a minor effect. This was also observed by
Kim & Fisher (1999) as well as Zhang & Kleinstreuer (2001). Nevertheless, higher Rein values indicate stronger direct
impaction, thereby leading to elevated TDEs.



Fig. 8. Local particle deposition patterns in different bifurcating airways: (a) in G6-G9 at Rein¼262 and St¼0.125; (b) in G9–G12 at Rein¼55 and St¼0.125;
(c) in G6–G9 at Rein¼262 and St¼0.037; (d) in G9–G12 at Rein¼55 and St¼0.037.
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4.6. Limitations of the study

Presently steady-state inlet conditions were assumed, based on 30 L/min and 60 L/min inhalation flow rates at the
mouth, and using the morphology of idealized lung airways (Weibel, 1963). Limited by the intense computational cost of
DDPM–DEM, simulation of dense suspensions of micro/nanoparticles in the whole human respiratory system would be
quite taxing. However, for a more comprehensive application using DDPM–DEM, simulations should be extended from the
current triple bifurcating airway segments (e.g., G3–G6, G6–G9, and G9–G12) to the entire human respiratory systems, i.e.,
from the nose/oral cavities to the alveolar region (see Kolanjiyil & Kleinstreuer, 2013a, b). Also, limited by the availability of
experimental data, particle interaction mechanisms and properties can only be approximated via the current contact
models. Specifically for particle transport in lung airways, measured parameter values for the particle–particle contact



Fig. 9. The total deposition efficiencies in bifurcating airways with different mouth inlet flow rates, inlet Reynolds numbers, and Stokes numbers.
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models, i.e., stiffness coefficient, frictional coefficient, damping coefficient and restitution coefficient, should be obtained
(Mader & Tomas, 2012). Furthermore, for the fluid–particle interacting forces and torques, empirical correlations are still
required.
5. Summary

In this study, the validity and necessity of DDPM–DEM for dilute and dense particle suspension transport and deposition
in different lung airway bifurcations, i.e., G3–G6, G6–G9, and G9–G12, have been numerically investigated. A new condition
for CF–PD model combination in terms of a relationship between inlet particle stacking volume fraction, ϕ, and percentage
of fate changing particles, Δβp, is proposed. It can be concluded that DDPM–DEM is a more accurate CF–PD model than DPM
at elevated ϕ-values and Stokes numbers, allowing now to simulate particle–particle and particle–wall interactions.
However, to assure numerical stability and accuracy more stringent computational requirements have to be considered
when introducing additional parameters and coupling via DDPM–DEM. Although the computational cost is quite high for
large-scale system simulations, DDPM–DEM is promising to be the next-generation CF–PD modeling approach for solving
lung dynamic problems for dense inhaled aerosol suspensions. New physical insight to the fluid–particle dynamics in
bifurcating airways has been provided as well.

Future research will focus on parallel computational efficiency enhancement of DDPM–DEM, development of a combined
CF–PD model with particle–particle and particle–wall interactions for micron as well as nanoparticles, and applications to
the whole human respiratory system.
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