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Abstract: This study focuses on deriving and presenting an infinite series as the analytical solution for
transient electroosmotic and pressure-driven flows in microtubes. Such a mathematical presentation
of fluid dynamics under simultaneous electric field and pressure gradients leverages governing
equations derived from the generalized continuity and momentum equations simplified for lami-
nar and axisymmetric flow. Velocity profile developments, apparent slip-induced flow rates, and
shear stress distributions were analyzed by varying values of the ratio of microtube radius to Debye
length and the electroosmotic slip velocity. Additionally, the “retarded time” in terms of hydraulic
diameter, kinematic viscosity, and slip-induced flow rate was derived. A simpler polynomial series
approximation for steady electroosmotic flow is also proposed for engineering convenience. The
analytical solutions obtained in this study not only enhance the fundamental understanding of the
electroosmotic flow characteristics within microtubes, emphasizing the interplay between electroos-
motic and pressure-driven mechanisms, but also serve as a benchmark for validating computational
fluid dynamics models for electroosmotic flow simulations in more complex flow domains. Moreover,
the analytical approach aids in the parametric analysis, providing deeper insights into the impact of
physical parameters on electroosmotic and pressure-driven flow behavior, which is critical for opti-
mizing device performance in practical applications. These findings also offer insightful implications
for diagnostic and therapeutic strategies in healthcare, particularly enhancing the capabilities of lab-
on-a-chip technologies and paving the way for future research in the development and optimization
of microfluidic systems.

Keywords: electroosmotic and pressure-driven flow; microtube flow; Debye–Hückel linear approximation;
retarded time; analytical solution

1. Introduction

Electroosmotic flow (EOF) is the motion of nanosized boundary layers of an ionized
liquid relative to stationary charged surfaces powered by an applied electric field [1]. The
liquid nanolayers moving along the walls carry via frictional effects the bulk fluid in the
conduit (see Figure 1). In microfluidics, when using micro-flow devices (MFDs) [2–4] or
biological-micro-electro-mechanical systems (bio-MEMSs) [5–7], EOF and other surface-
modulated flow applications are most appropriate for small-volume transport (Re <O(1)).
When higher Reynolds numbers are desired, e.g., for micro-heat sinks, a pressure gradient
also needs to be applied. EOF has recently been applied in various industries, includ-
ing microfluidics, chromatography, drug delivery, biomedical sensors, and electrokinetic
pumping [8]. Understanding electroosmotic and pressure-driven flows is also crucial in
unveiling the underlying transport phenomena and mechanisms of fluid and drug particles
in digestive, respiratory, or urinary tracts, as well as blood vessels [8,9], and other tubular
structures in the human body. Therefore, enhancing the fundamental understanding of the
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principles derived from electroosmotic and pressure-driven flows in microtubes has wide-
ranging applications in human health, from the microscopic level of cells and tissues [10]
to the macroscopic level of organ systems, offering invaluable insights into the diagnosis,
treatment, and understanding of various medical conditions.
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Figure 1. Sketch of the electroosmotic flow system.

Additionally, the principles of electroosmotic and pressure-driven microtube flow
dynamics directly apply to developing lab-on-a-chip (LOC) devices [11,12]. These devices
integrate various laboratory functions on a single chip, allowing for the quick and efficient
analysis of small volumes of biological fluids, such as blood or saliva [11]. For example,
it can be applied to the design of point-of-care (POC) devices for timely diagnosis and
treatment for patients [13,14]. It can also be potentially helpful especially in developing LOC
devices to mimic human vascular networks, and blood–air barriers in the human respiratory
system to investigate lung disease progression, diagnosis, and treatment [8,12,14–17].

While steady-state electroosmotic and/or pressure-driven flow has been thoroughly
investigated analytically [18–23], only a few researchers derive analytical solutions for
transient EOF in channels or tubes [24–28]. Specifically, previous studies of time-dependent
EOFs focused on different microchannel geometrics, typically using semi-analytical ap-
proaches or numerical methods [17,24,29–33]. Therefore, what has not been derived is the
analytical solution for transient electroosmotic and pressure-driven flows in a microtube.

Thus, this study derived and presented an infinite series as the analytical solution of
transient electroosmotic and pressure-driven flows in a microtube. The results are useful for
parametric analyses to gain physical insight, to study time-dependent flow effects, and to
validate complex computer simulation models. The analytical solutions in electroosmotic
and pressure-driven flows offer a precise mathematical representation of fluid behavior
under the influence of electrical and pressure gradients. This deepens the understanding
of the fluid dynamics in microchannels, which is often more complex due to the interplay
of electrical forces, fluid viscosity, and channel geometry. They allow for a systematic
analysis of how various parameters (e.g., electric field strength, fluid viscosity, and tube
diameter) affect flow characteristics. This is vital in optimizing microfluidic designs for
specific applications. By providing a theoretical baseline, the analytical solutions will also
be beneficial for guiding the design of experiments and the interpretation of experimental



Fluids 2024, 9, 140 3 of 16

data in electroosmotic and pressure-driven flow studies. They can also serve as benchmarks
for validating and refining numerical models that simulate electroosmotic and pressure-
driven flows, especially in complex geometries or non-linear regimes where analytical
solutions might be difficult to obtain.

2. Materials and Methods
2.1. Governing Equations, Initial Conditions, and Boundary Conditions

The general continuity and momentum equations for the electroosmotic and pressure-
driven flow in a cylindrical microtube (see Figure 1) can be given as:

∇ ·→v = 0 (1)

∂
→
v

∂t
+

→
v · ∇→

v = −∇p
ρ

+ ν∇2→v +
ρe

ρ

→
E (2)

where
→
v is the fluid flow velocity, p is the pressure, ρ is the fluid density, ρe is the elec-

tric charge density, ν is the fluid kinematic viscosity, and
→
E is the external electric field.

Assuming constant fluid properties, laminar, and axisymmetric flow, as well as using the
Poisson–Boltzmann Equation for thin electric double layers (EDLs) and the Debye–Hückel
linear approximation [34], Equations (1) and (2) can be simplified as:

∂vz

∂z
= 0 (3)

∂vz

∂t
= −1

ρ

∂p
∂z

+ ν

(
1
r

∂

∂r

(
r

∂vz

∂r

))
+

ρe

ρ
E0 (4a)

where E0 is the external electric field intensity. In Equation (4a), the new body force
expression ρe

ρ E0 can be further expressed as [34]:

ρe

ρ
E0 = − ε

ρ
E0

ϕ

λD
2 (4b)

where ε is the dielectric constant, ϕ is the EDL potential, and λD is the Debye length (see
Figure 1). The constant pressure gradient can be expressed as a function of the microtube
inlet Reynolds number ReP via the extended Bernoulli Equation for laminar flow, i.e.,

−∂p
∂z

=
∆p
L

=
32ρV2

RePD
(5)

where V = 1
A
∫

A vzdA is the area-averaged velocity and ReP =VPD/υ is the Reynolds
number based on the averaged Poiseuille flow velocity VP without electroosmotic flow,
which is assumed at t = 0. D = 2r0 is the tube diameter.

The EDL potential ϕ(r) is the solution of the Poisson–Boltzmann (P–B) equation [18,19],
which can be given as:

∇2ϕ = −1
ε

ρe =
sinh(ϕ)

λD
2 (6)

Equation (6) can be reduced for the present one-dimensional (1D) scenario to (see
Figure 1):

r
d2ϕ

dr2 +
dϕ

dr
− 1

λD
2 rϕ = 0 (7)
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The initial and boundary conditions for Equation (4a) are:

vz(t = 0) = vP =
r0

2

4µ

(
∆p
L

)(
1 −

(
r
r0

)2
)

(8)

vz|r = r0
= 0 (9a)

∂vz

∂r

∣∣∣∣
r = 0

= 0 (9b)

where r0 = D/2 is the microtube radius. For Equation (7), the initial and boundary
conditions are:

ϕ|r = r0
≈ ζ (10a)

∂ϕ

∂r

∣∣∣∣
r = 0

= 0 (10b)

It is worth noting that since the Stern layer of molecular thickness was ignored (see
Figure 1), the EDL potential at the wall is approximately equal to the Zeta potential ζ [18,19].

The following dimensionless parameters are introduced to rewrite the governing
equations, initial conditions, and boundary conditions, i.e.,

∼
vz =

vz

V
(11a)

∼
r =

r
r0

(11b)

∼
z =

z
L

(11c)

∼
t =

t
L/V

(11d)

∼
ϕ =

ϕ

ζ
(12a)

K =
r0

λD
(12b)

∼
p =

p

ρV2 (12c)

α =
L
r0

(12d)

where L is the length of the microtube. Substituting Equations (11) and (12) into Equa-
tion (4a) yields:

∂
∼
vz

∂
∼
t

= −∂
∼
p

∂
∼
z
+

2α

ReD
(

1
∼
r

∂

∂
∼
r
(
∼
r

∂
∼
vz

∂
∼
r
)) +

ρeE0L

ρV2 (13)

Accordingly, the associated boundary and initial conditions (see Equations (8) and (9))
can be rewritten as:

∂
∼
vz

∂
∼
r

∣∣∣∣∣∼
r = 0

= 0 (14a)

∼
vz

∣∣∣∼
r = 1

= 0 (14b)
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∼
vz

∣∣∣
t = 0

=
ReP
8α

∂
∼
p

∂
∼
z
(1 − ∼

r
2
) (14c)

Similarly, the P–B Equation (see Equation (7)) can be nondimensionalized as:

∼
r

2
· d2

∼
ϕ

d
∼
r

2 +
∼
r · d

∼
ϕ

d
∼
r
− K2 · ∼r

2
·
∼
ϕ = 0 (15)

The boundary conditions (see Equation (10)) for the P–B Equation can be rewritten as:

∼
ϕ
∣∣∣∼

r = 1
= 1 (16a)

d
∼
ϕ

d
∼
r

∣∣∣∣∣∼
r = 0

= 0 (16b)

Additionally, using Equation (5), the nondimensional term ∂
∼
p

∂
∼
z

in Equation (13) can be
expressed as:

∂
∼
p

∂
∼
z

= − 16α

ReP
(17)

2.2. Analytical Solution
2.2.1. Poisson–Boltzmann (P–B) Equation

The P–B Equation was solved first to obtain
∼
ϕ which was then substituted into the

momentum Equation for
∼
vz

(∼
r ,

∼
t
)

. Noticing that the P–B Equation is a modified Bessel
equation [35], it was solved with

∼
ϕ =

Bessel I
(

0, K · ∼r
)

Bessel I(0, K)
(18a)

where Bessel I(n, x) is the modified Bessel function of the first kind of order n, which is
defined as:

Bessel I(n, x) = i−n · Bessel J(n, ix) (18b)

When n = 0, Equation (18b) yields:

Bessel J(0, x) =
∞

∑
k = 0

(
1
4 x2
)k

(k!)2 (18c)

2.2.2. Velocity Profile

Based on the linear momentum Equation as well as its boundary conditions and initial
condition, the velocity is composed of a steady-state (SS) and a transient part, i.e.,

∼
vz =

∼
v

ss
z +

∼
v

t
z (19)

• Steady-state (SS) Solution

Eliminating the transient term of Equation (13) and substituting Equation (17) into
it yields:
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1
∼
r

∂

∂
∼
r

(
∼
r

∂
∼
v

ss
z

∂
∼
r

)
=

ρeE0L

2ρV2
ReD

α
− 8

VP

V
(20)

where the boundary conditions have been invoked. Introducing the relationship:

ρeE0 =
−ε · E0 · ζ · ∇2

∼
ϕ

r02 =
−ε · E0 · ζ

r02 · K2 ·
∼
ϕ =

−ε · E0 · ζ

r02 · K2 ·
Bessel I

(
0, K · ∼r

)
Bessel I(0, K)

(21)

where ε is the dielectric constant, the SS part of the solution for Equation (13) can be
given as:

∼
v

ss
z =

1
V

(
ε · E0 · ζ

µ

)
·

1 −
Bessel I

(
0, K · ∼r

)
Bessel I(0, K)

+
2VP

V
·
(

1 − ∼
r

2
)

(22)

Specifically, when VP = 0, which means the flow is purely driven by electroosmosis,
the SS part of the solution

∼
v

ss
z (see Equation (22)) can be simplified as:

∼
v

ss
z =

1
V

(
ε · E0 · ζ

µ

)
·

1 −
Bessel

(
0, K · ∼r

)
Bessel I(0, K)

 (23)

• Transient Solution

The transient part of the solution
∼
v

t
Z is governed by:

∂
∼
v

t
z

∂
∼
t

=
2α

ReD
(

1
∼
r

∂

∂
∼
r
(
∼
r

∂
∼
v

t
z

∂
∼
r
))

∂
∼
v

t
z

∂
∼
t

=
2α

ReD
(

1
∼
r

∂

∂
∼
r
(
∼
r

∂
∼
v

t
z

∂
∼
r
)) (24a)

Equation (24a) is subject to the given boundary conditions and initial condition, which
can be unified as follows:

∼
v

t
z

∣∣∣∣
t = 0

= − 1
V

(
ε · E0 · ζ

µ

)
·

1 −
Bessel I

(
0, K · ∼r

)
Bessel I(0, K)

+
2VP

V
·
(

1 − ∼
r

2
)

(24b)

By separating variables, the transient part of the solution can be solved and given in
the form of

∼
v

t
z =

∞

∑
n = 1

(Cne−
2α

ReD
·ξn

2·
∼
t · Bessel J(0, ξn

∼
r )) (25a)

where ξn is the nth root of Bessel J(0, x) and coefficient Cn can be given as:

Cn =

2
∫ 1

0 (− 1
V

(
ε·E0·ζ

µ

)
·
(

1 −
Bessel I

(
0,K·∼r

)
Bessel I(0,K)

)
+ 2VP

V
·
(

1 − ∼
r

2
)
) · Bessel J

(
0, ξn ·

∼
r
)
· ∼r d

∼
r

Bessel J(1, ξn)2 (25b)
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Therefore, the exact solution for the nondimensionalized axial velocity
∼
vz can be

expressed as:

∼
vz =

∼
v

ss
z +

∼
v

t
z = 1

V

(
ε·E0·ζ

µ

)
·
(

1 −
Bessel I

(
0,K·∼r

)
Bessel I(0,K)

)
+ 2VP

V
·
(

1 − ∼
r

2
)
+ ∑∞

n = 1 (Cne−
2α

ReD
·ξn

2·
∼
t · Bessel J(0, ξn

∼
r )) (26)

3. Results and Discussion
3.1. EDL Potential Profiles

Based on Equation (18a–c), the nondimensionalized EDL potential
∼
ϕ(r) in the near

wall region (i.e., approximately EDL) is shown in Figure 2 with different ratios between
the microtube radius and the Debye length, i.e., K = r0/λD. For practical applications,

understanding the behavior of
∼
ϕ(r) as a function of K can help predict and control the

flow characteristics in microfluidic devices. This is crucial for applications involving the
precise manipulation of fluids at the microscale, such as in LOCs where electroosmotic
flows are used for fluid transport. It can be found that as K increases (i.e., the EDL thickness
decreases), and the impact region of EDL potential gradually reduces a nano-size surface
layer. The Debye length λD characterizes the scale over which charge carriers screen
electrostatic potentials in electrolytes. With higher K values, the EDL becomes thinner
in comparison to the tube radius r0. This is visually evident from the potential profiles
shown in Figure 2, becoming steeper near the wall and collapsing more quickly to zero as
K increases. A thinner EDL indicates that the region influenced by surface charges becomes
more confined to the wall. It is worth noting that this study assumes that the microtube’s
hydraulic diameter is sufficiently large to avoid EDL overlap.
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∼
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∼
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K values.

3.2. Pure Electroosmotic Flow

For electroosmotic flow, which is not pressure-driven, the steady-state and fully
developed EOF velocity profiles (see Equation (23)) are depicted in Figure 3 as a function
of K. As indicated in Figure 2, the EDL-affected region changes measurably with K and
hence the velocity profiles. With large K, i.e., K = 2000 and λD ≪ 1, the velocity

distribution along the radial direction is nearly uniform, i.e.,
∼
v

SS
Z ≈ ∼

vz

∣∣∣
bulk

= constant,
outside of the very thin EDL. With the decrease in K which indicates the thickening in
EDL, the region of non-uniform near-wall velocity profiles becomes larger. due to the mass
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conservation,
∼
vz

∣∣∣
bulk

increases with the decrease in K. based on the observation in Figure 3,
it can be concluded that in pure electroosmotic flow, the steady-state velocity profile across
the tube is primarily determined by the distribution of the electric potential within the
edl, i.e., the length–scale ratio K = r0/λD. typically, in tubes with larger K (thinner edls),
the flow becomes more plug-like, with a uniform velocity profile across most of the tube
diameter, except very close to the walls where the velocity rapidly adjusts to match the
boundary conditions (i.e., zero velocity at the wall due to no-slip condition).
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3.3. Electroosmotic and Pressure-Driven Flow

In addition to the length–scale ratio K = r0/λD, the electroosmotic slip velocity
κ = ε·E0·ζ

µ is also important to characterize microtube flow behaviors for electroosmotic
and pressure-driven flow. κ indicates the ratio of electroosmotic vs. viscous effects, or
better as an apparent slip velocity when λD << 1. Higher values of κ suggest a dominant
electroosmotic effect over viscous effects, influencing the flow characteristics significantly.
Specifically, Figure 4 provides a graphical display of Equation (25) with multiple κ values.
It can be observed that the value of κ determines the nature of the flow, i.e., (1) when
κ = 0, it represents pure pressure-driven flow, where traditional Poiseuille flow is ob-
served, characterized by a parabolic velocity profile with no influence from electroosmotic
effects; (2) when κ > 0, the electroosmotic effect enhances the Poiseuille flow due to the
electroosmotic force aiding the pressure-driven flow, resulting in a modified velocity profile
that combines both effects; and (3) when κ < 0, the electroosmosis leads to a backflow
near the microtube wall, indicating that the electroosmotic forces oppose the pressure-
driven flow, potentially leading to complex flow dynamics. Additionally, the increased
electroosmotic effect, signified by a rise in κ, significantly influences the flow velocity
distribution within the microtube. This suggests that precise adjustments of electroosmosis
can be strategically utilized to manipulate microtube flows, achieving specific objectives
in various microfluidic applications. The interpretation of κ
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3.4. EOF Flow Rate Gain 

vEO,slip becomes apparent
for large K-values, such as K > 1000, as shown in Figure 5. Clearly, for K = 2000 and
κ = 1 × 10−4, the steady-state velocity profile varies from Poiseuille flow with slip at the
microtube wall, i.e., vEO,slip = 1 × 10−4 m/s. This implies that at high K values, even
small electroosmotic slip velocities can significantly alter the flow profile.
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Figure 4. Steady-state velocity profiles with different κ values for general case flows with K = 50.

Fluids 2024, 9, x FOR PEER REVIEW 8 of 15 
 

as an apparent slip velocity when 𝜆 << 1. Higher values of 𝜅 suggest a dominant elec-
troosmotic effect over viscous effects, influencing the flow characteristics significantly. 
Specifically, Figure 4 provides a graphical display of Equation (25) with multiple 𝜅 val-
ues. It can be observed that the value of 𝜅 determines the nature of the flow, i.e., (1) when 𝜅 = 0 , it represents pure pressure-driven flow, where traditional Poiseuille flow is ob-
served, characterized by a parabolic velocity profile with no influence from electroosmotic 
effects; (2) when 𝜅  0, the electroosmotic effect enhances the Poiseuille flow due to the 
electroosmotic force aiding the pressure-driven flow, resulting in a modified velocity pro-
file that combines both effects; and (3) when 𝜅 < 0, the electroosmosis leads to a backflow 
near the microtube wall, indicating that the electroosmotic forces oppose the pressure-
driven flow, potentially leading to complex flow dynamics. Additionally, the increased 
electroosmotic effect, signified by a rise in κ, significantly influences the flow velocity dis-
tribution within the microtube. This suggests that precise adjustments of electroosmosis 
can be strategically utilized to manipulate microtube flows, achieving specific objectives 
in various microfluidic applications. The interpretation of 𝜅 ≙ 𝑣ாை,௦ becomes apparent 
for large 𝐾-values, such as 𝐾   1000, as shown in Figure 5. Clearly, for 𝐾 = 2000 and 𝜅 = 1 ൈ 10ିସ, the steady-state velocity profile varies from Poiseuille flow with slip at the 
microtube wall, i.e., 𝑣ாை,௦ = 1 ൈ  10ିସ  m/s. This implies that at high 𝐾  values, even 
small electroosmotic slip velocities can significantly alter the flow profile.  

 
Figure 4. Steady-state velocity profiles with different 𝜅 values for general case flows with 𝐾 = 50. 

 
Figure 5. Steady-state velocity profiles with 𝐾 values for general case flows (𝜅 = 1.0 ൈ 10ିସ). 

3.4. EOF Flow Rate Gain 

Figure 5. Steady-state velocity profiles with K values for general case flows (κ = 1.0× 10−4).

3.4. EOF Flow Rate Gain

As indicated in Figure 4, a positive external electric field increases the electroosmotic
flow effect, thereby increasing the flow rate in microtubes. At the same time, a negative
one decreases the flow rate. The percentage of flow rate variation due to EOF (i.e., EOF
flow rate gain) can be quantified as:

∆Q
QP

=

(
V − VP

)
·πr0

2

VP·πr02
(27a)
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which can be further expressed as:

∆Q
QP

=

(
ε·ζ·E0

µ

)
(

r0
2∆p/∆z

4µ

) ·(1 − Bessel J(1, K)
K·Bessel I(0, K)

)
(27b)

Assuming κ = 1.0× 10−4, which is the case for NaCl in water, the dependence

of ∆Q
QP

on K is shown in Figure 6 with multiple VP =
(

r0
2∆p/∆L

4µ

)
values. Clearly, for

K values larger than 103, ∆Q
QP

approximately reaches constants. Specifically, when K ≥ 1000,
Bessel I(1,K)

K·Bessel I(0,K) = 0.00099 ≈ 0. Accordingly,

∆Q
QP

=
4·ε·ζ·E0

r02∂p/∂z
(28)
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Based on Equation (28) and neglecting the non-uniform velocity profile inside EDL,
the flow rate gain is just the ratio of apparent slip velocity over the average velocity for
Poiseuille flow. Also, as expected, ∆Q/QP is proportional to the intensity of the external
electric field.

3.5. Transient Velocity Profiles

Recalling that the general case of combined electroosmotic and pressure-driven flows
results from a superposition of both driving forces (i.e., external electric field and pressure),
the focus here is on transient velocity profile developments due to electroosmosis only. As
depicted in Figure 7, at t = 0 s, a constant external electric field is applied, and only the liquid
layer in the EDL is set into motion. As the liquid-layer velocity increases with time, radial
momentum transfer affects the bulk fluid in the microtube until a steady state is reached,

i.e., t → ∞ (see Figure 6). The nondimensionalized time
∼
t 0 for the velocity profile to reach

a steady state is defined as “retarded time”. When
∼
v

t
z

(∼
t =

∼
t 0

)
= 0.001 · ∼v

t
z

(∼
t → ∞

)
,

∼
t 0 can be expressed as:
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∼
t 0 =

6.9078 · ReD

2 · α · ξ1
2 =

0.5972·ReD
α

(29a)

or

t0 =
0.5972·ReD

α
= 0.2986

D2

υ
(29b)
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Figure 7. Velocity profile development with time of pure electroosmotic flow when K = 50 and
κ = 1.0 × 10−4.

It can be observed from Equation (29b) that t0 is only related to the hydraulic diameter
of the tube D and kinematic viscosity υ, which indicates that the momentum transfer is
dominated by viscous forces. As expected, when the fluid viscosity is high, the velocity
profile development takes less time to reach a steady state, independent of the average
velocity V.

3.6. Apparent Slip Velocity

Combined electroosmotic and pressure-driven flows result in velocity profiles very
similar to Poiseuille flow with slip boundary conditions if the velocity distribution inside
the EDL is neglected (see Figure 5). Therefore, an apparent slip velocity vslip at the wall
can be introduced, which is equal to the velocity at r = λD, where λD ≤ O (10 nm).
Specifically, the apparent slip velocity vslip can be expressed as:

vslip =

(
ε · E0 · ζ

µ

)
·
(

1 − Bessel I(0, 1)
Bessel I(0, K)

)
=

ε · E0 · ζ

µ
(30)

which is only a function of the external electric field intensity and fluid properties (see
Equation (2)). Hence, the governing Equation of electroosmotic flow can be rewritten as:

∂
→
v

∂t
+

→
v · ∇→

v = −∇p
ρ

+ ν∇2→v (31)

but with the key boundary condition:
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vz|r = r0
= vslip =

ε · E0 · ζ

µ
(32a)

∂vz

∂r

∣∣∣∣
r = 0

= 0 (32b)

as well as
vz|t = 0 = vP (33)

3.7. Polynomial Series Approximation of the Steady-State Electroosmotic Flow Solution

Considering Equation (29b), if D is of the order of 10−6, the characteristic time
t0 = O

(
10−4), which is negligible. Hence, the focus is on the analytical solution of

steady electroosmotic flow, i.e.,

∼
v

ss
z =

1
V

(
ε · E0 · ζ

µ

)
·

1 −
Bessel I

(
0, K · ∼r

)
Bessel I(0, K)

 (34)

utilizing a finite-term polynomial series solution to approximate the analytical solution.
Such a polynomial series approximation is more convenient for engineering use than the
complex Bessel function solution.

Expressing the Bessel I function in a polynomial series, i.e.,

Bessel I
(

0,
∼
r
)

=
N

∑
n = 1

1
n!n!

(∼
r
2

)2n

+ 1 (35)

Equation (34) can be rewritten as:

∼
vz

*ss
=

κ

V
·

1 −
∑N

n = 1
1

n!n!

(
K ·

∼
r
2

)2n

∑N
n = 1

1
n!n!

(
K
2

)2n

 (36)

Allowing an error between
∼
vz

ss
and

∼
vz

*ss
to be less than 5% yields the condition:

err =

∣∣∣∣∣∣
∼
vz

*ss
− ∼

vz
ss

∼
vz

ss

∣∣∣∣∣∣ ≤ 5% (37)

Apparently, err is a function of K and N. To guarantee N is large enough to satisfy
Equation (37), the following N-value estimation is proposed:

N =

[
51

100
· K
]
+ 18 (38)

where
[

51
100 · K

]
indicates the ceiling function, which is defined as the largest integer not

greater than 51
100 · K. Equation (38) is plotted in Figure 8, where it fits the calculation data

points (calculated by MAPLE 2024, Maplesoft, Waterloo Maple Inc., Waterloo, ON, Canada)
perfectly when K > 100. At K < 100, the estimation value of N is larger than the calculation
data of N, which can safely make the error even smaller.
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3.8. Shear Stress Distributions for Steady-State Flow

Shear stress can be written as:

τrz = µ

(
∂vz

ss

∂r

)
=

µV
r0

·
(

∂
∼
vz

ss

∂
∼
r

)
(39)

Employing Equation (22), τrz can be given as:

τrz = −µ · κ

r0
·

BesselI
(

1, K · ∼r
)
· K

BesselI(0, K)
+ 2VP

∼
r

 (40a)

Equation (40a) is the general expression of shear stress for electroosmotic and pressure-
driven flow, dependent on the parameters κ and K. Introducing characteristic shear stress
Γ = − µ·κ

r0
, the nondimensionalized shear stress

∼
τrz can be expressed as:

∼
τrz =

τrz

Γ
=

BesselI
(

1, K · ∼r
)
· K

BesselI(0, K)
+ 2VP

∼
r (40b)

Of interest are the shear stresses at the shear surface (i.e., r = r0 − λD or
∼
r = 1 − 1

K )
and at the wall (i.e., r = r0 or

∼
r = 1) (see Figure 1), which can be calculated using

Equation (40b) as:

∼
τShearSur f ace =

∼
τrz

(∼
r = 1 − K−1

)
=

BesselI(1, K − 1) · K
BesselI(0, K)

+ 2VP(K − 1) (41a)

∼
τWall =

∼
τrz

(∼
r = 1

)
=

BesselI(1, K) · K
BesselI(0, K)

+ 2VP (41b)

For pure electroosmotic flow, which implies VP = 0, the graphs of
∼
τShearSur f ace and

∼
τWall are shown in Figure 9. With larger K = r0/λD values,

∼
τWall and

∼
τShearSur f ace increase

because the reduced EDL thickness causes steeper velocity gradients at both r = r0 − λD
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and r = r0. Additionally,
∼
τShearSur f ace <

∼
τWall for all K-values, which aids in the velocity

profile development (see Figure 3). It can be observed from Figure 9 that the region in which
the shear stress drastically changes (i.e., the shear layer) shrinks when the K-value increases.

Fluids 2024, 9, x FOR PEER REVIEW 13 of 15 
 

 
Figure 9. Shear stress values at 𝑟 = 𝑟 − 𝜆 and 𝑟 = 𝑟 with different 𝐾 values. 

 

Figure 10. Shear stress profiles for different ሜು −values when 𝐾 = 50. 

4. Conclusions 
This study derived an analytical solution that can enhance the understanding of elec-

troosmotic and pressure-driven flows in microtubes, with far-reaching implications in the 
field of microfluidics. The analytical solutions derived illuminate the intricate dynamics 
of microscale flows, particularly underlining the roles of apparent slip and shear stress 
distribution. The “retarded time” concept, as introduced and quantified in this work, of-
fers another dimension to the understanding of transient flow behaviors in microscale 
environments. The practical utility of these findings is further enhanced by the proposed 
polynomial series approximation for steady-state electroosmotic flows, which simplifies 
complex calculations for engineering applications. By providing a more profound under-
standing of flow dynamics at the microscale, this research paves the way for the advanced 
design and optimization of microfluidic systems. It underscores the interplay between 
electroosmotic and pressure-driven mechanisms, marking a significant contribution to the 
theoretical and practical knowledge in microfluidics. This work not only adds to the ex-
isting scientific literature but also serves as a valuable guide for future research and de-
velopment in this dynamic and evolving field. 

Figure 9. Shear stress values at r = r0 − λD and r = r0 with different K values.

In the more generalized scenario of combined electroosmotic and pressure-driven
flows, assuming K = 50, the radial shear stress profiles for various VP

κ ratios are depicted
in Figure 10. Inside the EDL, the shear stress remains relatively unchanged with variations
in VP

κ . However, as VP
κ increases, indicating a steeper shear stress gradient due to the

Poiseuille component, a slight increase in shear stress is observed. Outside the EDL, shear
stress also rises with increasing VP

κ values. Notably, at the center line of the microtube
(
∼
r = 0), the shear stress consistently equals zero.
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4. Conclusions

This study derived an analytical solution that can enhance the understanding of
electroosmotic and pressure-driven flows in microtubes, with far-reaching implications
in the field of microfluidics. The analytical solutions derived illuminate the intricate
dynamics of microscale flows, particularly underlining the roles of apparent slip and
shear stress distribution. The “retarded time” concept, as introduced and quantified in
this work, offers another dimension to the understanding of transient flow behaviors
in microscale environments. The practical utility of these findings is further enhanced
by the proposed polynomial series approximation for steady-state electroosmotic flows,
which simplifies complex calculations for engineering applications. By providing a more
profound understanding of flow dynamics at the microscale, this research paves the way
for the advanced design and optimization of microfluidic systems. It underscores the
interplay between electroosmotic and pressure-driven mechanisms, marking a significant
contribution to the theoretical and practical knowledge in microfluidics. This work not
only adds to the existing scientific literature but also serves as a valuable guide for future
research and development in this dynamic and evolving field.
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