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ABSTRACT

Recurrent respiratory papillomatosis (RRP) is a chronic condition primarily affecting children, known as juvenile onset RRP (JORRP),
caused by a viral infection. Antiviral medications have been used to reduce the need for frequent surgeries, slow the growth of papillomata,
and prevent disease spread. Effective treatment of JORRP necessitates targeted drug delivery (TDD) to ensure that inhaled aerosolized drugs
reach specific sites, such as the larynx and glottis, without harming healthy tissues. Using computational fluid particle dynamics (CFPD) and
machine learning (ML), this study (1) investigated how drug properties and individual factors influence TDD efficiency for JORRP treatment
and (2) developed personalized inhalation therapy using an ML-empowered smart inhaler control algorithm for precise medication release.
This algorithm optimizes the inhaler nozzle position and diameter based on drug and patient-specific data, enhancing drug delivery to the
larynx and glottis. CFPD simulations show that particle size significantly affects deposition fractions in the upper airway, emphasizing the
importance of particle size selection. Additionally, optimal nozzle diameter and delivery efficiency depend on particle size, inhalation flow
rate, and release time. The ML-based TDD strategy, employing a classification and regression tree model, outperforms conventional inhala-
tion therapy by achieving a higher delivery efficiency to the larynx and glottis. This innovative concept of an ML-empowered smart inhaler
represents a promising step toward personalized and precise pulmonary healthcare through inhalation therapy. It demonstrates the potential
of AI-driven smart inhalers for improving the treatment outcomes of lung diseases that require TDD at designated lung sites.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0186786

NOMENCLATURE
Acronyms

CART Classification and regression trees
CFPD Computational fluid particle dynamics
CFC Chlorofluorocarbon

CHAID Chi-squared automatic interaction detector
CO2 Carbon dioxide

CPRT Controlled particle release and targeting
CV Cross-validation

DF Deposition fraction
DL Deep learning
DPI Dry powder inhaler

DPM Discrete phase model
DT Decision tree

GPR Gaussian process regression
HPV Human papillomavirus
ID3 Iterative dichotomiser 3

JORRP Juvenile onset recurrent respiratory papillomatosis
KTP Potassium titanyl phosphate
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MAE Mean absolute error
ML Machine learning
MSE Mean squared error
N-S Navier–Stokes equations

pMDI Pressurized metered dose inhaler
RRR Recurrent respiratory papillomatosis
RD Relative difference
RF Random forest
R2 Coefficient of determination

SST Shear stress transport
SVM Support vector machine
TB Tracheobronchial

TDD Targeted drug delivery
TDS Targeted delivery strategy

Symbols

CD Drag coefficient
Cc Cunningham correction factor
dp Particle diameter
Din Hydraulic diameter of the mouth opening

Dnozzle Optimal particle release nozzle diameter for targeted
delivery

dij Deformation rate
F
*

D Drag force
F
*

g Gravity
FL;i Saffman lift force
g
*

i Gravitational acceleration
iðtÞ Impurity function
K Constant coefficient of Saffman lift force
M Number of variables
mp Particle mass
N Observations
p Pressure
Pl Probabilities of the left nodes
Pr Probabilities of the right nodes
Q Transient inhalation–exhalation flow rate

Qin Average inhalation flow rate
Qmax Peak inhalation flow rate
Rein Inlet Reynolds number
Rep Particle Reynolds number
S Ratio of particle density to fluid density
T Total inhalation–exhalation time
tc Left and right child nodes
tp Parent node
u
*

f Airflow velocity

u
*

f

��� ���
Critical

Critical air velocity magnitude for iso-surface generation

u
*

p Particle velocity
(xc; yc; zc) Optimal nozzle center coordinate for targeted delivery

xjR Best splitting value
�y Mean of actual value
yi Actual value of dependent variable
ŷ i Predicted value of dependent variable

Greek symbols

k Mean free path of air

Di tð Þ Change of impurity function
l Air dynamic viscosity
� Kinematic viscosity
q Air density
qp Particle density
sij Viscous stress tensor

I. INTRODUCTION

Recurrent respiratory papillomatosis (RRP) is a clinical syndrome
with a viral origin that affects both adults and children, causing the
development of papilloma in the respiratory system.1 It is a disease
mainly caused by human papillomavirus (HPV) types 6 or 11, result-
ing in exophytic lesions throughout the human respiratory airways,
most commonly the larynx and glottis.2 Although tumors resulting
from RRP are mostly benign, the malignant possibility and fatality rate
become much higher in children, accompanied by rapid exacerbation
of the disease. The disease is also called juvenile onset RRP (JORRP),
which is more aggressive than adult-onset RRP.3,4

Finding an effective clinical therapy for JORRP is still challenging
due to a high propensity for recurrence and unsolvable complica-
tions.5,6 Surgery using photoangiolytic lasers, including the 532 nm
potassium titanyl phosphate (KTP) laser and the carbon dioxide
(CO2) laser, are the most frequently used techniques.7,8 However, the
recurrent nature of JORRP carries the risk of iatrogenic and general
anesthesia consequences and thermal tissue damage from laser treat-
ment.9 In this context, adjuvant antiviral medications have been pre-
scribed over the past decade and researched for potential therapeutic
uses.10 Several adjuvant medicines can be used to avoid blockage
throughout the infection.11 The primary criteria for adjuvant therapy
include more than four surgeries per year due to the growth of papillo-
mata that compromise the airways or the spread of disease to multiple
locations in the airway.12–15 Other antiviral drugs, such as acyclovir,
cidofovir, and ribavirin, hold potential as additional adjuvant therapies
to reduce treatment resistance.2 The goal of utilizing different vaccines
is to both prevent and treat RRP. There is limited proof to show the
effectiveness of these adjuvant methods, vaccines, and chemotherapy,
and none entirely stop the growth of the tumors.

Inhalation therapy can also be used to deliver specific medica-
tions to the larynx and glottis areas to help control tumor growth and
JORRP exacerbation. This may include the use of medications such as
interferon, cidofovir, or 5-fluorouracil. However, conventional inhala-
tion therapy will generate undesired deposition on healthy tissues
through the pulmonary route, reducing the therapeutic effectiveness
and leading to side effects. Such side effects can be complicated for
children and adolescents to tolerate. Ineffective drug delivery can also
result in the recurrence of JORRP tumors, which will need for ongoing
treatment and the possibility of further complications. Therefore, tar-
geted drug delivery (TDD) to the designated sites in the upper airway
is necessary for JORRP treatment.

Computational fluid particle dynamics (CFPD) can be used to
predict air-particle flow dynamics in lung airways. This approach has
been employed for decades to enhance the fundamental understanding
of the complex mechanisms involved in respiratory drug delivery.16

Based on first principles, experimentally validated CFPD models can
significantly reduce the time and expense required to develop new tar-
geted delivery strategies, by providing high-resolution spatiotemporal
distributions of pulmonary air-particle flow variables of interest. CFPD
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research efforts have been made to achieve pulmonary targeted drug
delivery, such as the controlled particle release and targeting (CPRT)
strategy, introduced by Kleinstreuer and Zhang.17 Specifically, by using
the particle “backtracking”method,17 CPRT can link the particle depo-
sition locations with their release positions at the mouth front to find
the precise particle release coordinates to deliver the drug particles to
designated lung sites. The research17 confirms a significant increase in
particle delivery efficiency for the targeted region in lung airways using
CPRT than conventional inhalation therapy. Another CFPD study
used a similar CPRT concept to achieve lobe-specific drug delivery. It
showed that using the targeted delivery strategy, lobe-specific drug
delivery can be enhanced up to 90% when the releasing position and
velocity of the drug particles were fine-tuned using CPRT compared
with the conventional inhalation therapy.18 Additionally, drug delivery
via the pulmonary route has been combined with charged substances
to achieve targeted delivery and improve aerosol deposition utilizing
external magnetic fields that were delivered externally.19–22 Another
CFPD study introduced a novel inhalation therapy of a short-pulsed
bolus of aerosolized drug particles.23 The study claimed that this
drug delivery method can lead to drug delivery efficiency to small
airways (i.e., G7 and above) higher than 68%. Recently, Islam and
Feng24 employed the CPRT concept and explored an innovative
approach to treat small airway tumors by administering aerosolized
chemotherapeutic particles via endotracheal catheters, focusing on
achieving the targeted delivery to tumor sites. Using CFPD, it shows
significantly improved drug delivery efficiencies to tumors located at
G10, offering a promising alternative to conventional therapies.
Wang et al.25 focused on improving the drug delivery efficiency for
COVID-19 treatment through targeted inhalation therapy. Utilizing
a patient-specific tracheobronchial tree model and computational
fluid dynamics, they optimized point-source aerosol release locations,
resulting in 3.2 times increase in deposition efficiency to specific lung
regions affected by COVID-19, with minimal impact on overall drug
delivery efficiency.

A couple of factors can make the targeted delivery to specific
regions in the pulmonary route challenging. It is commonly observed
that children and adult patients with serious lung conditions may face
difficulty in producing enough inspiratory airflow to carry sufficiently
high dose into designated lung sites, since a strong inhalation is
required to fluidize the drug powders and produce an appropriate
amount of therapeutic aerosols.26 In addition, it is quite challenging
for physicians to comprehend how a patient with pulmonary diseases
operates inhalers in practice when they are not in clinic.27 The inhaler
misuse can be either unintentional or planned. In reality, healthcare
professional often overestimate patient adherence to their medications
using correct patient–inhaler coordination.28 Therefore, inadequate
inhalation practice and low adherence to the prescribed personalized
treatment are two major factors in respiratory disease control failure
among patients. This has consistently been linked to poor drug deliv-
ery efficiency, decreased living standard, and increased healthcare
expenses.29 In other words, the intersubject variabilities and inconsis-
tencies in breathing patterns (e.g., preferred inhalation flow rate) can
significantly influence the drug delivery efficiency.

To address the issues of intersubject variabilities affecting delivery
efficiency, the concept of “smart inhalers” has been introduced. These
inhalers incorporate sensors to gather data on inhaler usage patterns
and patient metrics, offering personalized feedback based on usage

timing, inhalation technique, peak flow metrics, or survey outcomes.
Numerous studies have indicated that when patients use smart
inhalers, there is a notable increase in adherence, a significant decrease
in exacerbation rates, and enhanced lung function.30,31 While some
improvement in therapeutic effect is observed with smart inhaler use,
the efficacy of drug delivery primarily hinges on the number of thera-
peutic particles delivered to the targeted sites. Thus, beyond merely
collecting patient data, smart inhalers should leverage these data to
fine-tune the release and transport of aerosolized particles, aiming for
precise drug delivery to specific regions, like the larynx and glottis for
JORRP treatment, while minimizing drug deposition on healthy
tissues.

Therefore, the goal of this study is to develop a machine learning
(ML) algorithm enabled by CFPD that can be integrated into a novel
smart inhaler to effectively target the diseased region (i.e., larynx and
glottis) for JORRP treatment as an example with minimum particle
deposition on healthy tissues. This is achieved by automatically adjust-
ing the drug release nozzle based on patient-specific breathing charac-
teristics (i.e., inhalation flow rate) and inhaled drug properties (i.e.,
particle diameter). Based on the collected patient-specific information,
the ML algorithm aims to automatically find the optimized nozzle
location as well as the nozzle diameter that can maximize drug particle
delivery to the larynx and glottis region, enhancing the JORRP treat-
ment and reducing side effects. The ML algorithm is trained and
tested using data generated by experimentally validated CFPD simula-
tions of drug transport and deposition in a subject-specific human
upper airway geometry representing a 6-year-old child. Figure 1 shows
how CFPD is used to prepare the dataset depending on the different
parameters and how ML algorithm is being trained and tested based
on the CFPD dataset. During the implementation of the ML algo-
rithm, the signal acquisition system in the smart inhaler collects
patient breathing profiles and particle sizes as inputs first. Then, the
ML algorithm outputs the optimized nozzle diameter and location as
well as particle release time. These data will be sent to the automatic
nozzle adjustment system, which relocate the nozzle and releases the
drug particles when the patient inhales again. Figure 2 provides more
details explaining how the user-centered smart inhaler integrates with
patient-specific and medication-specific data and the ML algorithm.
The long-term goal is an AI-empowered user-centered smart inhaler
that can effectively target the diseased region with a high degree of
precision, providing a safer and more effective treatment option on a
patient-specific and medication-specific level. As far as we are aware,
the concept of an ML-empowered smart inhaler has not yet been
applied in targeted drug delivery for lung disease treatment. Hence,
this study represents a first-of-its-kind effort in developing an ML
algorithm to support targeted delivery using inhalation therapy for
lung diseases, aiming to revolutionize precision medicine by enhanc-
ing treatment efficacy and reducing side effects in pulmonary
healthcare.

II. METHODOLOGY
A. Geometry andmesh

As shown in Figs. 3(a) and 3(b), a subject-specific mouth-to-
trachea geometry32 is employed in this study, which was scaled to a
representative size of upper airways for 6-year-old children. A circular
mouth opening with a hydraulic diameter Din¼ 10mm is considered
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in this study, where the total area is 78.54mm2. The center coordinate
of the mouth opening is (x, y, z)¼ (0, 0, 0) m.

The finite volume mesh was generated using Ansys Fluent
Meshing 2022 R1 (Ansys Inc., Canonsburg, PA) and is comprised of
unstructured polyhedral mesh elements with near-wall prism layers [see
Fig. 3(c)]. Additionally, as shown in Figs. 3(c) and 3(d), 5-layer smooth
inflation was generated near the walls to resolve the boundary layer
inside the geometry precisely. The mesh independence test was carried
out to identify the ultimate mesh with the ideal combination of compu-
tational precision and efficiency. The final mesh contains 357 339 cells,
1 710 282 faces, and 1 073 934 nodes. In the mesh independence test
described above, the mouth inlet Reynolds number ðReinÞ was set to
8617, corresponding to a peak inhalation flow rate ðQinÞ of 60 l/min at
the mouth. This extreme condition was used to validate the robustness
of the CFPD model under high flow rates. The mouth inlet velocity of
12.73m/s was calculated based on the inhalation rate of 60 l/min and
the cross-sectional area of the airway at the mouth. The gauge pressure
was set to zero at the outlet point, and a non-slip boundary condition
was assumed at the airway walls. The mesh independence test was per-
formed using steady-state airflow simulation, assuming the airflow in
the airways remains constant over time.

B. Governing equations

1. Computational fluid particle dynamics (CFPD) model

The transition shear-stress transport (SST) model was employed
to predict the transitional flow patterns from laminar to turbulence in
the geometry from the mouth to the trachea induced by the mouth
inlet velocity conditions investigated in this study (see Table I for the
inhalation flow rates employed in this study). The governing equations
for airflow in tensor form can be given as

@ui
@xi

¼ 0; (1)

@ui
@t

þ uj
@ui
@xj

¼ � 1
q

@p
@xi

þ 1
q

@sij
@xj

þ gi; (2)

in which q is the air density, p is the pressure, ui denotes the air veloc-
ity, and gi ¼ ð9:81; 0; 0Þ m/s2 is the gravitational acceleration. In Eq.
(2), the viscous stress tensor sij is defined by

sij ¼ l
@ui
@xj

þ @uj
@xi

 !
; (3)

FIG. 1. An illustration of the machine learning (ML) algorithm for achieving the targeted drug delivery from data collection to model training and testing.
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where l is the air dynamic viscosity.
This study assumed that the inhaled particles are non-interactive

and spherical. The aerodynamic diameter (dp) of inhaled aerosolized
particles was from 500nm to 10lm. The study utilized the one-way

coupled Euler–Lagrange discrete phase model (DPM) and predicted
air-particle transport dynamics in the upper airway.33 Specifically, it
assumes that the particle transport dynamics is affected by the airflow
field, but the airflow field remains unchanged by the presence of the

FIG. 2. Schematic of the software–
hardware coupling of the AI-empowered
user-centered smart inhaler.

FIG. 3. Geometry and mesh details of the 3D mouth-to-trachea airway: (a) Schematic of the mouth opening (Din¼ 10mm), (b) two particle release positions in the z-direction,
(c) polyhedron-based mesh employed in this study, and (d) mesh details at the mouth inlet and larynx–glottis region.
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particles. It was assumed that viscous drag force, Saffman lift force,
and gravity were the main forces acting on the particles simulated in
this study. The particle translation equation (i.e., Newton’s second law)
was solved to predict particle trajectories accordingly, i.e.,

d
dt

mp~up
� � ¼~FG þ~FD þ~FL; (4)

wheremp and ~up are the mass and velocity of the particle, respectively;
~FG, ~FD, and~FL are the gravity, drag force, and Saffman lift force. For
particles with dp larger than 500 nm, the Brownian motion-induced
force is negligible. The drag force ~FD can be given by

~FD ¼ 1
8
pqd2pCD ~u �~up

� �
~u �~up
�� ��=Cc; (5)

where dp represents the particle diameter, and Cc stands for the
Cunningham correction factor. CD for spherical particles employed in
this study is a function of particle Reynolds number (Rep) and
Rep-dependent constants a1, a2 and a3, which can be expressed as34

CD ¼ a1 þ a2
Rep

þ a3
Rep2

: (6)

Rep can be defined as35

Rep ¼
q ~u �~up
�� ��dp

l
: (7)

In Eq. (5), the Cunningham correction factor Cc can be given by36

Cc ¼ 1þ 2k
dp

1:257þ 0:4e�0:55
dp
k

� �
; (8)

in which k is the mean free path of air.
The Saffman lift force ~FL is particularly noticeable for particles

with large size.37 The tensor form FL;i can be given by38

FL; i ¼ mp
2K�0:5dij

Sdp dlkdklð Þ14
uj � upj
� �

; (9)

where K ¼ 2:594 is the constant coefficient of Saffman lift force, � is
kinematic viscosity, S is the ratio of particle density to fluid density,
and dij is the deformation rate, which is

dij ¼ 1
2

ui;j þ uj;ið Þ: (10)

It is worth noting that the CFPD model employed in this study has
been extensively validated by the comparisons with benchmark experi-
mental data on pulmonary airflow field and particle deposition, which
can be found in previous publications.39–42

2. Machine learning (ML) algorithm

As a part of data preparation for ML model, a total of 315 CFPD
simulations were conducted depending on the variables used, i.e., peak
inhalation flow rate (Qmax) and particle aerodynamic diameter (dp)
(see Table I) to find the optimal nozzle diameter (Dnozzle) and nozzle
location (xc; yc; zc) to maximize drug deposition in the diseased site
(i.e., larynx and glottis). Qmax and dp are patient-specific and
medication-specific information depending on the prescription and
patient–inhaler coordination, which were selected as ML model inputs.
However, each pair of inhalation flow rate and particle diameter has
nine related CFPD simulations, and the differences were based on
varying particle release time and z-coordinate. To keep a one-to-one
mapping for ML model, one simulation case needed to select from
each of nine CFPD cases simulated from each of inhalation flow rate
and particle diameter pair. The selection criteria were to find the
CFPD result, which has the maximum available nozzle diameter for
targeted delivery from the mentioned nine CFPD case groups. Hence,
the ML model dataset was reduced to only samples as training and
testing data. Due to the limitations of the samples for the training and
testing data, 95% of the data were used for the training set. The com-
plete training and testing dataset is provided in Appendix A in the sup-
plementary material.

Several ML multi-output regression models were employed ini-
tially to optimize nozzle position and nozzle diameter for more effec-
tive targeted delivery to larynx and glottis with aerosolized particles,
based on the patient-specific input parameters mentioned in Fig. 1.
The ML regression models employed as candidates for comparison in
this study include support vector machine (SVM), random forest (RF),
Gaussian process regression (GPR), and decision tree (DT) [i.e., classi-
fication and regression trees (CART)].43,44 The objective of applying
multiple models was to find which one performs the best with this spe-
cific smart inhaler CFPD simulation data. Through comparison, the
CART regression model was selected based on the evaluation metrics
using different ML models listed in Table II.

Specifically, to evaluate the performances of ML models
employed on the smart inhaler data set, three evaluation metrics were
used, i.e., mean squared error (MSE), mean absolute error (MAE), and
coefficient of determination (R2). ML models were trained and tested
based on the two inputs (i.e., drug particle diameter and inhalation
flow rate) and five outputs (i.e., nozzle center Cartesian coordinates,
nozzle diameter, and particle release time). Accordingly, the evaluation
metrics need to be defined for a multioutput regression problem.
Thus, the metrics were defined as

MSE ¼ 1
mn

Xm
i¼1

Xn
j¼1

yij � ŷ ij
� �2; (11)

MAE ¼ 1
mn

Xm
i¼1

Xn
j¼1

yij � ŷ ij
�� ��; (12)

TABLE I. Parameter values employed in this study.

Particle
diameter,
dp (lm)

Inhalation
flow rate,

Qmax (l/min)

Z coordinate
of particle release,

zc (m)

Particle
release
time, t(s)

0.5 15 0.001 0
22.5

1 30
0.02 0.252 37.5

45
5

0.04 0.552.5
10

60
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R2 ¼ 1�

Pm
i¼1

Pn
j¼1

yij � ŷ ij
� �2

Pm
i¼1

Pn
j¼1

yij � �yið Þ2
; (13)

where ŷ ij ¼ ðx̂ cj; ŷ cj; ẑ cj;; t̂ j; D̂nozzle;jÞ is the predicted value of the
dependent variable i for each data point j, yij ¼ ðxcj; ycj; zcj;;
tj; Dnozzle;jÞ is the actual value of the dependent variable i for each data
point j, �yi ¼ ð�xcj; �ycj; �zcj;;�t j; �Dnozzle;jÞ is the mean of all the actual val-
ues for output i across all data points,m is the number of outputs, and
n is the total number of sample data. Dnozzle is the maximum (optimal)
nozzle diameter for targeted delivery, t is the particle release time, and
ðxc; yc; zcÞ are the center coordinates of the nozzle drug delivering
position.

Table II displays the performance of multiple ML models trained
and tested in this study, conducted with varying training dataset sizes
and employing a K-fold cross-validation approach with a value of 5.
These evaluations were carried out before any additional model opti-
mizations were applied. With a training size is 0.70, both SVM and
GPR exhibit poor R2 values, while RF and DT model shows decent R2

results. However, as the training size increases to 0.95, the R2 value for
the DT model improves along with reductions in both MSE andMAE.
This indicates that the DT model (i.e., CART) is more suitable for the
smart inhaler dataset. Therefore, DT model has been selected and opti-
mized further for this study.44 It is also worth mentioning that the DT
model can also be directly visualized with good interpretability. A
more comprehensive description of the CART model employed in this
study can be found in Appendix B in the supplementary material.

The optimized CART tree is trained and tested using the CFPD
dataset and then evaluated based on the metrics defined in Eqs.
(6)–(8). To further evaluate the prediction performances of the ML
model, DFs predicted using ML based targeted delivery strategy were
compared with the DFs using both conventional inhalation therapy

and targeted delivery strategy based on CFPD. Two threshold values
were defined to find the success rate of the CART model on targeted
delivery. More details on the ML model success criteria are explained
in Sec. IIIB 2.

C. Initial and boundary conditions

To create the training and testing dataset, a parametric analysis is
performed to evaluate the effects of different factors on the targeted
drug delivery using the proposed user-centered smart inhaler. A total
of 315 CFPD simulations were conducted to generate the data. CFPD
simulation results and post-processed data are recorded as samples for
training and testing dataset. Figure 1 shows the details of the training
and testing data structure. To achieve informative and reliable out-
comes regarding the objectives, the CFPD simulations and analysis
explored the impact of particle diameter, inhalation flow rates, particle
release time, and particle release position on drug delivery efficiency to
larynx and glottis. More details on the parametric study with different
initial and boundary conditions can be found in Table I.

1. Mouth inlet condition

Idealized sinusoidal airflow velocity profiles with an inhalation to
exhalation time duration ratio of 1:1 were used to represent the airflow
inlet conditions at the mouth opening.45 For this study, seven different
flow rates are considered (see Table I). The corresponding average
mouth inlet velocity varied between 3.18 and 12.73m/s. Figure 4 shows
all breathing waveforms. The transient inhalation–exhalation flow rate
Q is defined as follows:

Qin ¼ Qmaxsin
2pt
T

� �
: (14)

Here, Qmax refers to the maximum flow rate, and T represents the total
inhalation–exhalation time, which has been set to 2 s. The peak

TABLE II. ML model accuracy for training and testing data for multiple ML models used. Note: � indicates the best model compared to the other ML model without further
improvements. The DT� model then further optimized using GridSearchCV technique for multiple K-fold values (see Table VII).

Training size¼ 0.70 and KFold¼ 5

SVM RF GPR DT

For training
data

For testing
data

For training
data

For testing
data

For training
data

For testing
data

For training
data

For testing
data

MSE 0.5801 0.0722 0.0015 0.0022 0.4487 0.0962 0.0015 0.0028
MAE 0.4809 0.1661 0.0139 0.0164 0.5359 0.1684 0.0136 0.0161
R2 0.4199 �263.0 0.5848 0.0611 0.5513 �55 591.0 0.6003 0.1975

Training size¼ 0.95 and KFold¼ 5

SVM RF GPR DT�

For training
data

For testing
data

For training
data

For testing
data

For training
data

For testing
data

For training
data

For testing
data

MSE 0.6023 0.0784 0.0017 0.0002 0.6538 0.1109 0.0014 0.0001
MAE 0.4807 0.1773 0.0161 0.0090 0.5994 0.2721 0.0130 0.0029
R2 0.3977 �92.02 0.4993 �0.0038 0.3462 �58 278.0 0.5057 0.6545
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inhalation flow rates employed in this study are 15, 22.5, 30, 37.5, 45,
52.5, and 60 l/min.

A total of 11 330 spherical particles with density of 1000kg/m3

were injected through the mouth inlet in the positive z direction (see
Fig. 3). Particle number independence test has been carried out to find
the optimum number of particles considering the best balance between
computational accuracy and time (see the Appendix C in the supple-
mentary material).

2. Airway wall boundary condition

No-slip wall boundary condition is applied on airway walls. For
particle deposition, the simulation model includes a “trap” boundary
condition at the wall of the respiratory tract, due to the presence of
mucus layers inside the airway. Because of the trap boundary condi-
tion, the coefficient of restitution is equal to zero, resulting in no parti-
cle reflections when the distance between the particle center and the
airway wall is less than the particle radius.

3. Trachea outlet condition

Gauge pressure was set to zero at the trachea outlet, while an
“escape” condition is considered at both mouth inlet and trachea out-
let. Physiologically, the escape condition implies that the particles leav-
ing the trachea outlet and may deposit somewhere in tracheobronchial
tree.

D. Numerical setup

To predict the transport and deposition of inhaled aerosolized
medication particles to larynx and glottis to treat JORRP patient, back-
track particles, generate particle release maps, and prepare the training
and testing dataset, Ansys Fluent 2022 R1 (Ansys Inc., Canonsburg,
PA) was employed. To maintain numerical stability, a time step of
0.01 s was employed for the flow and the simulation was regarded as

fully converged when all residuals dropped below 10�4. The Navier–
Stokes (N–S) equations were resolved using a second-order upwind
momentum simple scheme and pressure–velocity coupling method in
both space and time using the finite-volume method. The Dell
Precision T7910 workstation that has an IntelVR XeonVR Processor E5-
2643 v4 with dual processors, 64 cores, and 128 GB RAM was used for
the numerical simulations. Each simulation took approximately 3 h
using six threads to complete with a 2 s inhalation–exhalation cycle
(see Fig. 4).

In-house user-defined functions (UDFs), MATLAB, and Python
codes were used for:

(1) Generating the monodispersed drug particles injection files;
(2) Specifying the transient sinusoidal inhalation waveform at the

mouth opening;
(3) Setting the DPM drag coefficient;
(4) Defining the DPM time step;
(5) Generating results for particle deposition data in the respiratory

route of the lung through post-processing; and
(6) Finding the maximum diameter of the inscribed circle as the

optimal nozzle diameter for particle release to achieve targeted
delivery to larynx and glottis.

III. RESULTS AND DISCUSSION
A. CFPD results

1. Airflow field in upper airway

Figures 5–7 show the airflow velocity magnitude contours and
the secondary flow velocity vectors across seven representative cross
sections (AA0 to GG0) within the airway geometry for three representa-
tive time peak inhalation flow rate Qmax, i.e., 15, 37.5, and 60 l/min.
All the contours were generated at the flow time of t¼ 0.5 s, which are
at the peak inhalation flow and zc ¼ 0.001m. It can be observed that
the airflow velocity distributions in each cross section have no notice-
able variations with the increase in inhalation flow rate despite the
changes in velocity magnitude (see Figs. 5–7). One vortex can be
observed at DD0, which is located at larynx. Furthermore, relatively
higher velocities and skewed velocity distributions can be found in the
DD0 and EE0, which are due to the reduction in lumen in larynx and
glottis, as well as the formation of laryngeal jet core because of the iner-
tial impaction of inhaled airflows (see iso-surfaces shown in Figs. 5–7).
Figures 5–7 also illustrate the 3D iso-surfaces of velocity magnitude
highlighting the structure of the laryngeal jet. It can be observed that in
all laryngeal jet cores (see Figs. 5–7), a high-velocity stream is gener-
ated as the airflow transits through the glottis with the contraction
before entering the trachea. It is worth noting that the tracheal jet is
not aligned with the axial centerline of the trachea, due to the inertial
effect of the inhaled airflow after impinging the pharynx.

2. Local particle deposition

To investigate the impact of Qmax and dp on local particle deposi-
tion patterns from mouth to trachea, three representative particle sizes
(i.e., dp ¼ 500 nm, 2, and 10lm) were selected for comparison at peak
inhalation flow rate Qmax from 15 to 60 l/min, as shown in Figs. 8–10.
For cases shown in Figs. 8–10, the particle release time and the particle
release z-position maintained constant at t¼ 0.0 s and zc ¼ 0.001m,
respectively.

FIG. 4. Sinusoidal inhalation–exhalation waveform with seven peak inhalation flow
rates. Note: Blue vertical lines indicate particle release times (t¼ 0.0, 0.25, and
0.5 s).
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Specifically, Figs. 8(a)–8(g) show local particle deposition patterns
for the smallest particles (i.e., dp ¼ 500nm) used in this study, aiming
to investigate how local particle deposition varies with Qmax. It can be
observed from Figs. 8(a)–8(g) that very few particles deposited in the
oral cavity and oropharynx despite the changes in Qmax with 500 nm
particles. At the lowest Qmax of 15 l/min, most particles exited the tra-
chea outlet with only a few particles deposited in the trachea region
[see Fig. 8(a)]. As the Qmax increased from 15 to 60 l/min, more par-
ticles deposited from the larynx to trachea [see Figs. 8(b)–8(g)], which
is mainly due to the enhanced turbulence dispersion effect.
Accordingly, 500nm particles started to deposit in the larynx to tra-
chea region with the increasing Qmax. Furthermore, Figs. 8(d)–8(g)
show that when Qmax increased from 37.5 to 60 l/min flow rate, total
depositions of 500 nm particles increased and the regional deposition
also increased in the larynx to trachea region. Meanwhile, there were
still a considerable number of particles leaving the trachea and entering
the tracheobronchial (TB) tree. Such a finding indicates that to achieve
targeted drug delivery to the larynx and glottis region is necessary since
it will avoid particle deposition in TB tree to cause side effects.

Figures 9(a)–9(g) illustrate local particle deposition patterns for
2lm particles at different Qmax. These figures explain very similar
trends between local particle deposition patterns and the variation of
Qmax like 500nm particles [see Figs. 8(a)–8(g)], with very few particles
depositing in the oral cavity and oropharynx area, and a huge number
of particles exiting the trachea, even with the increased inhalation flow
rate. Also, the deposition in the larynx to trachea part is less with lower

Qmax, as shown in Figs. 9(a)–9(c). Following the same trend, the depo-
sition increases with the increasing flow rate [see Figs. 9(d)–9(g)]. The
maximum deposition can be found at Qmax ¼ 60 l/min flow rate for
2lm particles, whereas the lowest deposition was seen for 15 l/min.
One noticeable difference between the deposition of 500nm and 2lm
particles is that there is more particle deposition in the mouth-to-
trachea region for the 500 nm particles, which is possibly due to the
higher turbulence dispersion effect with smaller particle size.

The local deposition patterns for 10lm particles are presented in
Figs. 10(a)–10(g). Due to the stronger inertial impaction effect of these
larger size particles, most of the particles deposited at the back of the
oral cavity and pharynx, with significantly fewer particles deposited in
larynx and glottis and nearly no particles deposited in the trachea.
In addition, with a relatively low Qmax, 10lm particles deposited more
in the larynx and trachea region, spanning from the oral cavity to lar-
ynx region [see Figs. 10(a)–10(c)]. In contrast, at higher flow rates
(Qmax � 37:5 L=min), almost all particles deposited in the oral cavity
to oropharynx region and only a few particles deposited on larynx [see
Figs. 10(d)–10(g)]. For Qmax ¼ 52.5 and 60 l/min, particles deposited
in the oral cavity and oropharynx regions [see Figs. 10(f)–10(g)]. This
is because increasing inhalation flow rate will increase the particle iner-
tial impaction effect, which leads to more particles depositing in the
oral cavity and back of the pharynx with the stronger impingement of
the airflow. One noticeable difference for 10lm particle local deposi-
tion is that all the injected particles deposited before leaving the larynx
and glottis area, whereas a substantial number of the 500nm and

FIG. 5. Velocity contours at multiple cross sections and laryngeal jet core (critical velocity for iso-surface generation ~ufj jCritical ¼ 4.7 m/s) with a peak inhalation flow rate of
15 l/min.
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10lm particles can exit the trachea. This indicates that using large par-
ticle size may reduce the potential for them entering TB tree to cause
side effects.

3. Optimal Nozzle Diameter and Location vs Qmax

and Particle Release Time

To investigate the impact of the peak inhalation flow rate and
particle release time on the available nozzle diameter for particle
release to achieve targeted delivery, 12 representative particle release
maps are visualized in Fig. 11 associated with multiple Qmax and the
particle release times. Simulations were conducted with 10lm par-
ticles, using Qmax ¼ 15, 22.5, 30, 37.5, 45, 52.5, and 60 l/min and three
particle release times t¼ 0.0, t¼ 0.5, and t¼ 1.0 s. Based on the full-
mouth drug release CFPD simulation results (i.e., conventional inhala-
tion therapy simulations), the particle release maps shown in Fig. 11
were generated using the backtracking strategy where the precise parti-
cle release coordinates were colored by their deposition sites in the air-
way. Specifically, particles were colored orange if they deposited at the
pharynx or glottis region, while blue particles deposited at other loca-
tions in the upper airway. Therefore, using the particle release maps
can predetermine the available region for particle release to deliver the
medications to the targeted regions, i.e., pharynx and glottis to treat
JORRP. Another purpose of using particle release maps is to identify
the maximum nozzle diameter and optimal location for precise particle
release for targeted drug delivery. An in-house Python code was used

to find the optimal position and diameter of the nozzle in the available,
orange-colored area in the particle release maps to maximize the tar-
geted drug delivery. The black-colored dotted circle in Fig. 11 shows
the maximum diameter and the location of the nozzle. The corre-
sponding nozzle diameters and positions for all the flow rates and par-
ticle release time used for the targeted delivery are also tabulated in
Table III. The deposition fractions (DF) of those conventional inhala-
tion therapies from the CFPD simulation results are presented in
Table III as well.

The particle release maps displayed in Fig. 11 highlight the sig-
nificant impact of both particle release time and peak inhalation flow
rates on determining the optimal nozzle diameter Dnozzle and location
ðxc; yc; zcÞ for targeted drug delivery to the pharynx and glottis.
However, this influence does not follow a straightforward or linear
pattern. Specifically, when the peak inhalation flow rate Qmax is set at
15 and 30 l/min, an increase in nozzle diameter can be observed as
the particle release time increases from t¼ 0.0 to t¼ 0.5 s. In con-
trast, at 45 and 60 l/min, the CFPD results presented in Fig. 11 reveal
that the nozzle diameter decreases as the best release time extends
from t¼ 0.0 to t¼ 0.5 s. Furthermore, while the optimal nozzle loca-
tion does vary with changes in both inhalation flow rate and particle
release time, there is also no clear-cut, monotonic relationship
between these parameters and nozzle locations. This complex and
non-linear relationship between parameters and nozzle diameter
Dnozzle and location ðxc; yc; zcÞ, necessary for precise targeted delivery,
underscores the need to employ ML and/or deep learning (DL)

FIG. 6. Velocity contours at multiple cross sections and laryngeal jet core (critical velocity for iso-surface generation ~ufj jCritical ¼ 11.5 m/s) with a peak inhalation flow rate of
37.5 l/min.
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methodologies to comprehensively study and predict these intricate
relationships.

It is also worth mentioning that one difference was observed in
the release map for 15 l/min flow rate and t¼ 0.25 s release time in

Fig. 11. This particle release map has a big, orange-colored available
region for targeted delivery, which can also be supported by the rela-
tively high DF of 80.38% from Table III. However, several blue-
colored particles, which are not depositing in non-targeted region, are

FIG. 8. Local deposition patterns of inhaled particles (dp¼ 500 nm) at release time t¼ 0.0 s with multiple peak inhalation flow rates.

FIG. 7. Velocity contours at multiple cross sections and laryngeal jet core (critical velocity for iso-surface generation ~ufj jCritical ¼ 18.3 m/s) with a peak inhalation flow rate of
60 l/min.
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trapped in the inscribed orange region. It is the reason that the optimal
nozzle diameter kept smaller even the release map seems have a bigger
available targeted region.

Another noticeable finding is that when the particles are injected
at t¼ 0.0 s, the nozzle diameter increases with the increase in Qmax.

However, opposite trends between nozzle diameter and Qmax are
shown for release time t¼ 0.25 and t¼ 0.5 s, in which the nozzle diam-
eters are decreasing or remaining almost similar when Qmax increased.
Since both inhalation flow rate and particle release time can influence
the inlet Reynolds number ðReinÞ at the time of drug particle release,

FIG. 9. Local deposition patterns of inhaled particles (dp¼ 2 lm) at release time t¼ 0.0 s with multiple peak inhalation flow rates.

FIG. 10. Local deposition patterns of inhaled particles (dp¼ 10 lm) at release time t¼ 0.0 s with multiple peak inhalation flow rates.
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additional figures (see Figs. 12–14) are presented to show the data
trends between the optimal xc and yc coordinates of the nozzle center,
the optimal nozzle diameter Dnozzle, and Rein at the time of particle
release. The purpose of analyzing Figs. 12–14 is to investigate whether
there are clear relationships that can be shown between ML inputs and
outputs (see Fig. 1).

Specifically, Figs. 12(a)–12(c) highlight the relationship between
the optimal nozzle center xc coordinate and Rein across multiple zc
coordinates of the nozzle center for particle release (i.e., zc¼ 0.001,
0.02, and 0.04m). Concurrently, Fig. 12(d) provides 95% confidence
ellipses for the three datasets shown in Figs. 12(a)–12(c). It can be
observed from Figs. 12(a)–12(c) that there are no clear trends of opti-
mal nozzle x coordinates with the increase in Rein across all three noz-
zle zc release coordinates. Nonetheless, a subtle increase in the optimal

nozzle x coordinate with Rein is faintly discernible through the confi-
dence ellipses in Fig. 12(d), although the impact of the nozzle center zc
coordinate on the optimal nozzle xc coordinate appears to be negligible.
Meanwhile, Figs. 13(a)–13(c) elucidate the relationship between the
optimal nozzle center y coordinate and Rein at particle release across
the same multiple zc coordinates of the nozzle center as investigated in
Figs. 12(a)–12(c). Figure 13(d) showcases 95% confidence ellipses for
the three datasets presented in Figs. 13(a)–13(c). Similar to the observa-
tions in Fig. 12, there is no distinct pattern in the optimal nozzle yc
coordinates with the escalation in Rein for all three nozzle zc release
coordinates shown in Figs. 13(a)–13(c). From the confidence ellipses
presented in Fig. 13(d), it can be observed, the optimal nozzle yc coordi-
nate decreases when particles are released deeper within the mouth (i.e.,
at larger zc coordinates). Figures 14(a)–14(d) further suggest that

FIG. 11. Particle release maps at three
different particle release time with four dif-
ferent peak inhalation flow rates for par-
ticles with dp¼ 10 lm and z-coordinate of
particle release position at zc ¼ 0.001 m.
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TABLE III. Corresponding nozzle diameter and deposition fraction at three different particle release time with three different flow rates for 10-lm particle injection.

Peak inhalation
flow rate,
Qmax (l/min)

Particle release
time, t (s)

Nozzle
Z-coordinate,

zc (m)

Nozzle
X-coordinate,

xc (m)

Nozzle
Y-coordinate,

yc (m)

Nozzle
diameter,
DNozzle (m)

Deposition
fraction (DF) (%)

15 0.0 0.001 �0.003 295 0.000 786 0.001 702 24.87
15 0.25 0.001 �0.000 179 0.001 452 0.002 170 80.38
15 0.5 0.001 0.001 514 0.001 809 0.003 431 82.52
30 0.0 0.001 �0.002 634 �0.000 649 0.002 435 53.69
30 0.25 0.001 0.003 184 �0.000 840 0.003 015 62.83
30 0.5 0.001 0.003 387 �0.000 122 0.002 813 41.98
45 0.0 0.001 �0.002 417 0.001 023 0.003 782 62.17
45 0.25 0.001 0.003 242 �0.000 155 0.003 046 52.54
45 0.5 0.001 0.002 504 �0.000 124 0.003 287 27.78

FIG. 12. Optimal nozzle x coordinates vs mouth inlet Rein at particle release time: (a) Optimal nozzle x coordinate vs Rein for particle release z-coordinate zc¼ 0.001 m, (b)
optimal nozzle x coordinate vs Rein for particle release z-coordinate zc¼ 0.02 m, (c) optimal nozzle x coordinate vs Rein for particle release z-coordinate zc¼ 0.04 m, and (d)
confidence ellipses for data shown in (a), (b), and (c).
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neither Rein nor the nozzle zc coordinate for particle release signifi-
cantly impacts the optimal nozzle diameter range. Therefore, it can
be concluded that (1) to determine the optimal nozzle location and
release timing for maximizing drug delivery efficiency to the larynx
and glottis for JORRP treatment, the aid of an AI algorithm (i.e., the
present study) is essential; (2) furthermore, investigation is needed to
learn the relationships between parameters mentioned above, by
plotting the raw dataset provided in Appendix D (in the supplemen-
tary material) in other ways (see Sec. IIIA 3 and Fig. 15).

4. Optimal nozzle diameter for TD vs drug
characteristics and human factors

The optimal nozzle diameter Dnozzle plays a crucial role in tar-
geted delivery, influencing both the ease and reliability of successfully
implementing TDS in inhaler production and clinical use. To explore
the impacts of drug properties (i.e., particle diameter) and human fac-
tors (i.e., inhalation and exhalation profile) on the optimal nozzle

diameter Dnozzle, Figs. 15(a)–15(i) illustrate the variations in nozzle
diameter based on the parameters mentioned above at different parti-
cle release time and nozzle center zc coordinates. Specifically, the parti-
cle diameter dp ranges from 500nm to 10lm, the particle release time
t changes from t¼ 0 to t¼ 0.5 s, and the nozzle center zc coordinate
varies from zc ¼ 0.001 to zc ¼ 0.04m for all peak inhalation flow rates
Qmax, which were used in this study. More detailed information on the
parameters and their values can be found in Table I.

Figures 15(a)–15(i) show a common tendency is that the optimal
nozzle diameter tends to rise along with the particle diameter with a
few exceptions. This is because the orange particle release areas (see
Fig. 11 as an example) for larger particle size (i.e., dp¼ 5 and 10lm)
are much larger than those for smaller particle size, which enables
larger available region for nozzle placement with larger optimal diame-
ters. However, it is worth noting that the optimal nozzle diameter
Dnozzle is zero for the following cases, i.e., particles (dp ¼ 10lm) with
flow rates 52.5 and 60 l/min using release time stations at t¼ 0.25 and
t¼ 0.5 s [see Figs. 15(c), 15(f), 15(h), and 15(i)]. This occurs because

FIG. 13. Optimal nozzle y coordinates vs mouth inlet Rein at particle release time: (a) Optimal nozzle y coordinate vs Rein for particle release z-coordinate zc¼ 0.001 m, (b)
optimal nozzle y coordinate vs Rein for particle release z-coordinate zc ¼ 0.02 m, (c) optimal nozzle x coordinate vs Rein for particle release z-coordinate zc¼ 0.04 m, and (d)
confidence ellipses for data shown in (a), (b), and (c).
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that very few particles deposited in the targeting region (i.e., larynx
and glottis) in those cases (see the particle local deposition patterns in
Fig. 10), due to the relatively high Rein at particle release time and the
resultant high inertial impaction for particle deposition in pharynx.

Additionally, Fig. 15 indicates that the optimal nozzle diameter
tends to increase along with the particle release time (also see
Appendix D in the supplementary material for the raw CFPD data) in
most conditions. This trend indicates that releasing particles at
t¼ 0.25 and t¼ 0.5 s during inhalation time tends to result in higher
deposition and larger particle release region (i.e., orange region in par-
ticle release maps). Differences in some cases can also be observed in
Figs. 15(b)–15(i) where the nozzle diameter increased from release
time t¼ 0.0 to t¼ 0.25 s, then decreased at t¼ 0.5 s. Such observation
indicates that enhancing particle deposition in larynx and glottis needs
subtle inlet condition control to reach the optimal balance between
inertial impaction and turbulence dispersion. Specifically, a higher Rein
at the time of particle release results in a greater turbulence dispersion
effect, which favors particle deposition in the larynx and glottis. Yet,
simultaneously, a higher Rein during particle release can also enhance

inertial impaction, resulting in particle losses from deposition in
regions like the oral cavity and pharynx, which are upstream of the tar-
geted area for JORRP treatment. For instance, the reduction in optimal
nozzle diameter Dnozzle as the particle release time increases from
t¼ 0.25 to 0.5 s shown in Figs. 15(b)–15(i) can be attributed to the
heightened deposition and subsequent particle losses in the oral cavity
and pharynx due to the rising Rein: Among all CFPD simulation
results, the maximum nozzle diameter was found for dp ¼ 5lm with
the peak inhalation flow rate of 52.5 l/min, particle release time at
t¼ 0.5 s, and nozzle center coordinate zc¼ 0.001m [see Fig. 15(c)].

Furthermore, Fig. 15 also unveils that the nozzle diameter
changes as the particle injection z coordinate (i.e., zc) changes for each
peak inhalation flow rate and particle release time. The general trend
can be seen is that the nozzle diameter Dnozzle tends to increase as the
nozzle position changes from zc¼ 0.001 to zc¼ 0.04m, which is
aligned with Fig. 14. However, a few different results are also seen for
cases with dp ¼ 10lm particles in Figs. 15(c), 15(f), and 15(i), as
Dnozzle decreases with increasing zc. Overall, particle size has more
noticeable influence on the nozzle diameter as it is clearly found in

FIG. 14. Maximum nozzle diameter vs mouth inlet Rein at particle release time: (a) Maximum nozzle diameter vs Rein for particle release z-coordinate zc¼ 0.001 m, (b) maxi-
mum nozzle diameter vs Rein for particle release z-coordinate zc ¼ 0.02m, (c) maximum nozzle diameter vs Rein for particle release z-coordinate zc ¼ 0.04m, and (d) confi-
dence ellipses for data shown in (a)–(c).
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Fig. 15 that smaller particle sizes (dp ¼ 500nm, 1, and 2lm) are show-
ing very small nozzle diameters, whereas using 5 and 10lm particles
provides a good improvement in nozzle diameter Dnozzle. To facilitate
the readers to understand Sec. III A 3, the raw CFPD data shown in
Fig. 15 are provided in Appendix D in the supplementary material.

B. ML Results

1. Targeted delivery efficiency vs conventional
inhalation therapy efficiency

As shown in Figs. 1 and 2, the ML model was trained for output-
ting the optimal nozzle diameter Dnozzle, nozzle location (xc; yc; zcÞ,
and particle release time (t) to achieve the highest targeted delivery

efficiency based on patient-specific and medication-specific inputs [i.e.,
peak inhalation flow rate (Qmax) and particle diameter (dp)]. To evalu-
ate the precision of ML output, Fig. 16 compares the DF results
between the conventional inhalation therapy (i.e., full-mouth aerosol
inhalation) and the targeted delivery strategy (TDS) developed based
on ML or CFPD. As mentioned above, data shown in Fig. 16 demon-
strate how well the targeted drug delivery efficiency to larynx and glot-
tis using CFPD simulation with ML outputs, in comparison with
targeted drug delivery determined solely by CFPD targeted delivery
simulations. For this study, 315 simulation cases were run using vari-
ous combinations of the listed parameters in Fig. 2. However, to keep
one-to-one mapping between the input data and the corresponding
continuous target values that can be used for CART model training,
the training and testing dataset is reduced to 35 samples, using

FIG. 15. Comparison of nozzle diameter depending on different parameters and in terms of peak inhalation flow rates at various release time (t) and release z-position (zc): (a)
t¼ 0.0 s, zc¼ 0.001 m, (b) t¼ 0.25 s, zc¼ 0.001 m, (c) t¼ 0.50 s, zc¼ 0.001m, (d) t¼ 0.0 s, zc¼ 0.02m, (e) t¼ 0.25 s, zc¼ 0.02m, (f) t¼ 0.50 s, zc¼ 0.02m, (g) t¼ 0.0 s,
zc¼ 0.04m, (h) t¼ 0.25 s, zc¼ 0.04m, and (i) t¼ 0.50 s, zc¼ 0.04m.
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constraints for filtration. Specifically, for each peak inhalation flow
rate, five respective sample CFPD simulation datasets were chosen five
different particle diameters, considering the maximum nozzle diameter
and targeted delivery efficiency to larynx and glottis, irrespective of
particle release time and position. Consequently, there are 35 data
samples after using the constraint filtration mentioned above, with five
for each inhalation flow rate.

In this section, three types of CFPD simulation data were used to
evaluate the precision of the ML model in predicting targeted delivery,
compared to CFPD predicted TDS and conventional inhalation ther-
apy. Figure 16(a) shows the DF comparison for the CFPD simulation
data, which were not used for ML training and testing. Sample data
used for Fig. 16(a) were randomly selected from each of the peak inha-
lation flow rates. Therefore, other parameters, such as particle diameter
dp, particle release time t, and release zc position, are not the same as
each other. Alternatively, Fig. 16(b) shows the DF comparison with
selected CFPD simulation data, which were used for ML training and
testing dataset. Finally, six additional peak inhalation flow rates were
chosen as midpoint flow rates between each pair of the neighboring
seven flow rates Qmax used in this study (i.e., 18.75, 26.25, 33.75, 31.25,
48.75, and 56.25 l/min). The DFs across three types of drug particle
delivery methods discussed in this study, including the conventional,
trained ML models using CFPD results as inputs, and solely CFPD
prediction strategy for targeted delivery, are compared and visualized
in Fig. 16(c). A detailed summary of the boundary conditions used for
the samples considered for Fig. 16 is also tabulated in Table IV.

Based on the DFs shown in Fig. 16 between conventional inhala-
tion therapy, targeted delivery strategy (TDS) developed solely based
on CFPD, and TDS based on ML, it is evident that both targeted deliv-
ery results show improvements in deposition at larynx and glottis (i.e.,
the targeted region) compared to the conventional inhalation therapy.
Higher deposition in targeted regions is considered favorable as it indi-
cates a more effective delivery of drug particles in diseased areas and
less deposition in healthy tissues. Indeed, TDS developed solely based
on CFPD simulations shows consistently higher DFs compared to the
conventional inhalation therapy, as shown in Figs. 16(a)–16(c). The
targeted delivery efficiency, i.e., DF at larynx and glottis, can reach
close to 99.4%. This suggests that CFPD simulations help in achieving
better drug delivery outcomes for these samples as better treatment for

JORRP. This is likely because CFPD allows for a more accurate control
and detailed simulation of particle trajectories based on first principles
when using particle release maps, resulting in better targeted delivery
efficiency to larynx and glottis. However, using TDS developed solely

TABLE IV. Details of the boundary conditions of the 25 samples used for DF’s
comparison.

Sample

Peak inhalation
flow rate,

Qmax (l/min)

Particle
diameter,
dp (lm)

Nozzle
Z-coordinate,

zc (m)

Particle
release

time, t (s)

1 15 5 0.001 0.5
2 22.5 5 0.04 0.5
3 30 1 0.04 0.25
4 30 5 0.04 0.25
5 37.5 10 0.001 0.25
6 45 2 0.04 0.5
7 52.5 1 0.04 0.5
8 60 2 0.02 0.5
9 15 10 0.02 0.25
10 22.5 2 0.04 0.5
11 22.5 5 0.02 0.5
12 30 2 0.04 0.5
13 30 10 0.02 0.25
14 37.5 0.5 0.04 0.25
15 37.5 5 0.04 0.5
16 45 10 0.02 0.25
17 52.5 2 0.04 0.5
18 52.5 5 0.001 0.5
19 60 5 0.02 0.5
20 18.75 2 0.02 0
21 26.25 10 0.001 0.5
22 33.75 0.5 0.04 0.25
23 41.25 10 0.001 0.5
24 48.75 5 0.04 0
25 56.25 1 0.02 0.25

FIG. 16. DF comparisons at larynx and glottis among conventional inhalation therapy, TDS developed based on CFPD, and TDS developed based on ML: (a) CFPD simulation
data that were not used for ML dataset, (b) CFPD simulation data from ML dataset, (c) CFPD simulation data considering midpoint inhalation flow rates.
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based on CFPD is time-consuming, due to the high cost of computa-
tional time for patient-specific and disease-specific CFPD simulations.
With much lower computational cost, the TDS based on ML model
prediction shows varying results in comparison with TDS based solely
on CFPD and conventional inhalation therapy. In some cases, TDS
based on ML model prediction performs closely to TDS developed
solely based on CFPD, indicating that the ML model has learned to
approximate CFPD results effectively. In Fig. 16(b), sample cases 10,
12, 15, and 19 show almost similar DF predictions for both TDS based
on ML model and TDS based solely on CFPD. However, in other
cases, TDS based on ML model prediction shows lower DFs than TDS
developed solely based on CFPD, i.e., all cases shown in Fig. 16(a).
Such observations indicate that the predictive capability of the ML
model is not always on par with TDS solely based on CFPD simulation
in accuracy. It is also worth mentioning that sample data 3, 5, and 6 in
Fig. 16(a) shows even less DFs for ML prediction compared to the con-
ventional inhalation therapy. However, ML model prediction shows
better performance in Fig. 16(c) with the DFs for sample cases 20, 21,
23, and 24 even higher than CFPD-based TDS. Overall, both the ML-
predicted CFPD-based TDS and the CFPD solely based on TDS can
significantly enhance the targeted delivery efficiency to larynx and
glottis compared to the conventional inhalation therapy, indicating a
potential enhancement in therapeutic outcome and reduced side effect.

2. MLmodel performance

To further analyze the success rate of the applied ML model to
the CFPD dataset, this study sets up two threshold values as a mea-
surement of the success. The threshold values are RD� 15% and
RD� 20%, where RD is the relative difference between DFs associated
with different drug delivery strategies. The ML prediction is considered
a success when the RD is not more than the specified number. The RD
is measured with the DF of TDS based on ML model prediction com-
pared with the DF of both conventional inhalation therapy and the DF
of TDS developed solely based on CFPD. More details of RDs and the
success rate are listed in Tables V and VI, as well as Fig. 17. The nega-
tive RDs in some cases indicate that the DF of TDS based on ML
model prediction is higher than the DF of both conventional inhala-
tion therapy and the DF of TDS developed solely based on CFPD.

Table V and Fig. 17(a) show the RDs in between the DF of TDS
based on ML model prediction and the DF of conventional inhalation
therapy. It is evident that ML model prediction gives better DF in
almost all cases. In only five cases, the ML prediction fails to meet the
threshold RD values. Despite those few inaccurate predictions, the suc-
cess rate of the ML model is around 80% (see Table V) compared to
conventional inhalation therapy. Such comparisons indicate that the
TDS based on ML can successfully deliver aerosolized medications to
larynx and glottis with higher DFs at least with a success rate of 80%
than conventional inhalation therapy.

The comparison of DFs for TDS developed solely based on
CFPD and TDS based on ML model based on the two threshold values
is added in Table VI and Fig. 17(b). The success rate for ML model is
56% when the RD� 15%, and it increases to around 60% when the
RD threshold value is 20%. The comparison indicates that TDS based
on ML provides similar or higher targeted delivery efficiencies in 56%
or 60% cases when compared to the TDS developed solely based on
CFPD. Although the success rate of TDS based on ML is not very
high, it remains a preferred option for the targeted delivery, because it

can deliver drug to larynx and glottis more than the conventional inha-
lation therapy with a success rate of 80%.

Additionally, the ML model performances were also evaluated by
a few evaluation metrics such as MSE, MAE, and R2, depending on
varying CV-fold value for the cross-validation (CV). Table VII listed
those metrics values across different CV-fold numbers for both train-
ing and testing data. The MSE and MAE for the CV-fold with two on
the training and testing data are low, and the R2 is high for training
data but very low for testing. This shows that the ML model does not
generalize well to new data. The CV-fold with twelve has the lowest
MSE and MAE with highest R2 on the training data, but it also has the
negative R2, which means very worse prediction. The threefold CV
appears to be a reasonable balance between precision and generaliza-
tion though it has a comparatively high MSE and MAE on training
data, but low on the testing data. The R2 value for the training and test-
ing dataset is 0.4778 and 0.7493, respectively. This indicates that the
ML model explains 47.78% and 74.93% of the variation in the training
data and in the testing data, respectively. The findings indicate that the
ML model performs better on testing data than on training data,

TABLE V. The success rate of the ML model compared to conventional injection
depending on one threshold value.

Sample

DF of
conventional
injection (%)

DF of TD
for ML

prediction (%)

Relative
differences
(RD) (%)

RD� 15;
acceptable (Y)

or not
acceptable (N)

1 56.09 74.38 �32.61 Y
2 7.67 34.24 �346.43 Y
3 14.85 1.96 86.80 N
4 23.67 40.81 �72.41 Y
5 48.70 4.85 90.05 N
6 13.06 0.30 97.70 N
7 43.42 49.12 �13.11 Y
8 16.69 17.30 �3.64 Y
9 80.32 75.75 5.69 Y
10 8.83 36.22 �310.45 Y
11 32.03 50.54 �57.78 Y
12 11.15 37.77 �238.77 Y
13 59.45 95.70 �60.97 Y
14 8.87 81.62 �820.02 Y
15 78.73 91.13 �15.75 Y
16 32.03 81.62 �154.81 Y
17 17.76 1.60 91.00 N
18 80.05 94.53 �18.08 Y
19 78.23 96.09 �22.82 Y
20 0.79 34.12 �4195.56 Y
21 65.24 97.00 �48.67 Y
22 6.95 26.28 �278.40 Y
23 33.49 89.89 �168.45 Y
24 4.54 87.41 �1826.85 Y
25 5.97 0.98 83.58 N

Success rate (%) 80
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TABLE VI. Success rate of the ML model compared to CFPD prediction depending on two threshold values.

Sample
DF of

TD for CFPD (%)
DF of TD for ML
prediction (%)

Relative differences
(RD) (%)

RD� 15%; acceptable (Y)
or not (N)

RD� 20%; acceptable (Y)
or not (N)

1 86.91 74.38 14.42 Y Y
2 39.09 34.24 12.42 Y Y
3 41.66 1.96 95.30 N N
4 51.35 40.81 20.52 N Y
5 99.41 4.85 95.13 N N
6 34.76 0.30 99.14 N N
7 69.02 49.12 28.84 N N
8 40.56 17.30 57.34 N N
9 96.62 75.75 21.60 N N
10 32.37 36.22 �11.89 Y Y
11 66.12 50.54 23.56 N N
12 38.56 37.77 2.06 Y Y
13 98.68 95.70 3.01 Y Y
14 95.18 81.62 14.25 Y Y
15 90.82 91.13 �0.34 Y Y
16 95.18 81.62 14.25 Y Y
17 38.91 1.60 95.89 N N
18 88.84 94.53 �6.40 Y Y
19 95.45 96.09 �0.68 Y Y
20 21.56 34.12 �58.25 Y Y
21 93.17 97.00 �4.11 Y Y
22 40.31 26.28 34.79 N N
23 81.53 89.89 �10.26 Y Y
24 23.57 87.41 �270.94 Y Y
25 22.57 0.98 95.66 N N

Success rate (%) 50 57.14

FIG. 17. 2D scatter plots of DFs in larynx and glottis using different drug administration strategies: (a) Targeted DF using TDS based on ML vs DF using conventional inhalation
therapy (see Table V), and (b) Targeted DF using TDS based on ML vs Targeted DF using TDS based on CFPD (see Table VI).
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demonstrating that the model is not overfitted and that it generalizes
well to new data.

In summary, the TDS based on ML model significantly outper-
forms the conventional inhalation therapy in terms of particle deliv-
ered dose to the targeted region, meaning no or less side effects on
healthy tissues. On the other hand, the TDS based on ML model is not
up to the level of TDS developed solely based on CFPD. However, the
TDS based on ML model is still somehow comparable to TDS devel-
oped solely based on CFPD in targeted delivery efficiency with much
lower computational cost. Both TDS methods showed improved drug
delivery to the larynx and glottis than conventional inhalation therapy,
which will provide for better JORRP treatment.

IV. CONCLUSIONS

This study proposed and developed a physics-informed ML
model for TDS development for JORRP treatment, utilizing the CFPD
simulation data to investigate the feasibility of delivering the drug par-
ticles precisely to the JORRP affected region, specifically to the larynx
and glottis. TDS based on ML model can provide the optimal nozzle
location and nozzle diameter as well as the particle release time to pre-
cisely control the aerosolized particle release to achieve the targeted
drug delivery, according to the patient-specific inhalation information
and drug particle sizes. This capability enables more effective drug par-
ticle delivery to the designated airway sites (i.e., larynx and glottis),
while minimizing the deposition on the healthy tissues. Such a ML
model can be potentially integrated into a user-centered smart inhaler
to achieve personalized targeted delivery for precise JORRP treatment.
Additionally, the ML model can be further trained with targeted drug
delivery dataset for other chronic lung diseases to deliver drugs to
other specific designated pulmonary sites. Based on the analysis of
CFPD and ML data and performance, key conclusions of this study
are listed below, i.e.,

(1) Inhaled particle size has significant influence on DFs in upper
airway, and the resultant particle release map patterns and the
easiness of targeted delivery. Larger particles (i.e., dp ¼ 10 lm)
have enhanced inertial impaction, which leads to concentrated
particle deposition in the oral cavity and pharynx, and nearly
no deposition at larynx and glottis.

(2) Larger optimal nozzle diameter as well as higher targeted deliv-
ery efficiencies to the larynx and glottis region was found in
most of the cases for larger particles (i.e., 5 and 10 lm),
although the flow rates, particle release time, and particle release
zc position are changing. However, a few exception cases were

also seen, indicating a need for further study to find a better
correlation between the investigated factors and the possible
nozzle diameter.

(3) Both the peak inhalation flow rate and particle release time
show noticeable impact on the configuration of particle release
maps, thereby influencing the inhaler nozzle diameter and the
injection position. At a release time of t¼ 0.0 s, an increase in
peak inhalation flow rate leads to a larger nozzle diameter
because of the enhanced turbulence dispersion due to the higher
inhalation flow rate and the inlet Reynolds number. On the
other hand, for release times at t¼ 0.25 and 0.5 s, an increasing
flow rate results in a smaller nozzle diameter. This is due to the
further enhanced inertial impaction, which leads to a major loss
of drug particles due to the deposition in oral cavity and phar-
ynx before reaching larynx and glottis. Therefore, an appropri-
ate inlet Reynolds number at the time of particle release is
important for achieving optimal targeted delivery to larynx and
glottis.

(4) In comparison with other ML regression models, the CART
model shows more accurate results, with the best accuracy
found with MSE, MAE, and R2. The R2 values clearly indicate
that the sample size is not high enough for high ML model
accuracy, despite their low MSE and MAE values.

(5) Given the constrained size of the training and testing datasets,
two distinct threshold values were established to assess the per-
formance of the ML model in achieving successful targeted
delivery. The findings indicate that the ML CART model facili-
tates a notable enhancement in particle delivery to the larynx
and glottis compared to conventional inhalation therapy, show-
ing an 80% success rate in deposition fraction comparisons.
Additionally, in approximately 60% of the case comparisons,
the ML CART model yielded deposition fractions comparable
to TDS developed solely based on CFPD. Consequently, the ML
CART model devised in this study holds promise for shaping
patient-specific and medication-specific targeted delivery strate-
gies, paving the way for minimized side effects, optimized thera-
peutic results, and a more cost-efficient and expedient
approach.

V. LIMITATIONS OF THIS STUDY AND FUTURE WORK

The simplifications and assumptions of this study are as follows:

(1) During actuation, significant changes in temperature may take
place while using inhaler resulting in thermophoretic influences
on particles,46 as well as droplet size change due to evaporation/
condensation.

(2) This study utilized one-way air-particle coupling, neglecting the
influence of particle presence on airflow field or particle–
particle interactions such as agglomeration/de-agglomeration.47

(3) Monodisperse aerosols and mean particle diameters were
employed in CFPD simulations instead of more realistic poly-
disperse particle size distributions.48

(4) The deformation kinematics of tongue, glottal aperture, and
lungs were neglected in this study.49

(5) The impact of cilia-driven mucus motion on drug removal was
not taken into account in the study.50

TABLE VII. ML model performance based on different CV values.

Training data Testing data

CV MSE MAE R2 MSE MAE R2

2 0.0014 0.0129 0.5972 0.0001 0.0028 0.0146
3 0.0018 0.0156 0.4778 0.0001 0.0022 0.7493
5 0.0014 0.0130 0.5057 0.0001 0.0029 0.6545
10 0.0014 0.0130 0.5874 0.0001 0.0028 0.0036
12 0.0006 0.0056 0.7559 0.0001 0.0040 �1.8407
15 0.0014 0.0130 0.5057 0.0001 0.0029 0.6545
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(6) The dataset used for training and testing the ML CART model
is currently limited (see Fig. 1 and Sec. III B 1), offering poten-
tial for expansion in future studies.

To address the above-mentioned simplification and assumptions,
future work includes:

(1) Explore the temperature and relative humidity changes in
human respiratory system as well as their effect on particle/
droplet size change and transport dynamics.

(2) Include more realistic polydisperse particle size distributions in
future CFPD simulations.

(3) Develop a geometrical model having a realistic dynamic airway
motion for the future CFPD study.

(4) Employ two-way coupled Euler–Lagrange method or discrete
element method (DEM) and will be included to enable the sim-
ulation of realistic particle–airflow interactions and particle–
particle interactions.

(5) Develop a multiscale numerical approach, integrating CFPD
with the discrete element method (DEM), will be employed to
explicitly simulate cilia motion-driven mucus movement to
examine the impact of mucus clearance on drug delivery using
flexible fiber model.51

(6) Augment the training and testing data with expanded CFPD
simulations on targeted drug delivery by considering additional
factors such as inter-subject variability in anatomy and disease-
specific lung environment. Additionally, employing a broader
range of ML and DL algorithms could further enhance the effi-
ciency of inhaler drug delivery.

SUPPLEMENTARY MATERIAL

See the supplementary material for Appendix A: Dataset Used for
the ML Model Training and Testing (After Filtration); Appendix B:
The CART Model Implementation and Optimization; Appendix C:
Particle Number Independence Test; Appendix D: Complete Dataset
for ML Training and Testing (315 CFPD Simulations).
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