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Abstract This chapter is the second of the two chapters demonstrating the wide variety of CFD studies in clinical
applications presented from leading researchers in their respective fields. This chapter covers the latest
research techniques and outcomes in whole lung modelling; Modeling the Effect of Airway Motion Using
Dynamic Imaging; and Automatic reconstruction of the nasal geometry from CT scans.
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Chapter 10
Clinical CFD Applications 2

Feng Yu, Hayati Hamideh, Bates Alister, Koch Walter, Lehner Matthias,
Benda Odo, Ortiz Ramiro, and Koch Gerda

Abstract This chapter is the second of the two chapters demonstrating the wide vari-1

ety of CFD studies in clinical applications presented from leading researchers in their2

respective fields. This chapter covers the latest research techniques and outcomes in3

whole lung modelling; Modeling the Effect of Airway Motion Using Dynamic Imag-4

ing; and Automatic reconstruction of the nasal geometry from CT scans.5

10.1 Whole-Lung Modelling6

Yu Feng, Hamideh Hayati7

10.1.1 Introduction8

To accurately evaluate the lung dose of inhaled particulate matters from the nose, the9

influence of lower respiratory tract on the upstream airflow patterns in human nose10

needs to be modeled. Specifically, the presence of lower respiratory tract will alter11

the impedance of the expiratory airflows and the resultant particle transport dynamics12

backflowing into the nasal cavity. Therefore, it is necessary to improve predictive13

capabilities of computational fluid-particle dynamics (CFPD), i.e., the whole-lung14

modeling strategy, to precisely estimate the aerosol deposition from nasal cavity to15

alveoli with full inhalation-exhalation breathing cycles, which is difficult to acquire16
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2 F. Yu et al.

via in vitro and in vivo methodologies [13, 21, 37]. The overall complexity of the17

lung with bifurcating architecture, hierarchical cellular composition, and continual18

dynamic motion results in complex fluid phenomena which perplex deposition of19

inhaled aerosols.20

Whole-lung modeling capabilities are not only able to provide a full map of21

regional depositions of inhaled aerosols, but also enable the accurate simulation22

of expiratory particle dynamics after the inhalation. Specifically, simulations using23

the truncated subject-specific airway geometries reconstructed from CT/MRI data24

only contain airways up to generation 9 (G9). The missing lower airways force25

the researchers to make assumptions on how many particles will be able to “re-26

enter” the flow domain from the truncated airway outlets during the exhalation after27

the inhalation. With the whole-lung modeling strategies, the lung aerosol dynamics28

during the full inhalation-exhalation cycles can be predicted without such ad-hoc29

simplifications. Whole-lung modeling efforts have been made to demonstrate that30

because of their small size, micro-to-nano scale toxic and/or therapeutic aerosols31

that vastly exist in the ambient environment are respirable and can penetrate the32

peripheral lung and enter the systemic region via the air-blood barriers [13, 15, 16,33

22, 27, 35–40, 47, 48, 74, 75, 78, 81].34

Due to the morphological complexity of the human respiratory system, and the35

limited resolution of medical imaging techniques [15, 20, 37, 59], identified chal-36

lenges to develop whole-lung models are: (1) the lack of small-airway CT/MRI data37

for airway reconstructions [20], and (2) the extremely high computational cost of38

full-scale CFPD simulations of all airways in entire 23 generations [36, 37]. Accord-39

ingly, research efforts have been made to develop alternative whole-lung modeling40

strategies to optimize the balance between computational accuracy and efficiency41

[13, 15, 35–40, 47, 48, 74, 75, 78, 81], which are discussed in the next section.42

10.1.2 Existing Whole-Lung Modeling Strategies43

Realistic airway configurations are currently restricted to the few upper air-way44

generations since lower airway configurations are not easy to reconstruct due to45

the limited resolution of the scanned images. Moreover, even if the entire lung was46

fully segmentable, it is not computationally feasible to simulate the full lung tree47

accurately, because it requires billions of 3D mesh elements [15, 37, 59]. Therefore,48

several common strategies have been employed in existing whole-lung models: (1)49

using equivalent geometry (e.g., trumpet) to represent the entire tracheobronchial50

tree, (2) reducing the degree of freedom (DOF) of the whole lung airway trees by51

truncating airways and applying advanced coupled boundary conditions [36, 37, 59,52

74, 75, 78], and (3) by simplifying small airways using 1D pipelines or 2D in-plane53

airway models instead of 3D geometries [74, 81].54

Specifically, popular approaches for simulating inhaled particle deposition are55

‘trumpet’ model [73], deterministic single and multi-path models [1, 13, 48, 54],56

and stochastic multi-path models [33, 34, 47]. The stochastic model of human lung57
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10 Clinical CFD Applications 2 3

consider asymmetry and randomness of the airway system, as well as, variation in58

parameters (inter-subject variation), i.e., diameter and length of the tubes, branching59

and gravity angles and the number of bifurcation in each bronchial pathway [34].60

In contrast, deterministic approaches do not take the inter-subject variability into61

account [37].62

10.1.2.1 Trumpet Models63

The trumpet model [73] is one of the simplified deterministic models that consider the64

tracheobronchial tree as an axisymmetric trumpet matching the morphometric data65

of the deterministic Weibel [80] model. Choi and Kim [13] developed a single-path66

mathematical model, i.e., the two-dimension (2D) trumpet model with connected67

alveoli [73], to estimate the whole-lung particle deposition. They considered both68

axial and lateral transport of inhaled particles with the contraction and expansion69

of alveoli walls. Figure 10.1a demonstrates the 2D trumpet geometry to represent70

the human lung. Specifically, the alveolar region present G18 to G23.The trumpet71

is designed based on the fact that the volume of each generation increases from72

G1 to G23. Although the computational efficiency using the 2D trumpet model is73

high, the regional deposition results are not predictive, because of the simple inlet74

conditions and semi-analytical correlations for the deposition mechanisms. Such a75

2D trumpet model may not be able to predict lung aerosol dynamics, especially76

related to the dense particle suspensions from dry powder inhalers (DPIs), in which77

the interactions between particles may significantly affect particle trajectories in the78

lung, but cannot be modeled using the 2D trumpet model. Kolanjiyil and Kleinstreuer79

[37] further developed a 3D trumpet modeling approach, i.e., the whole-lung airway80

model (WLAM). Considering the fact that the extra-thoracic airway has significant81

effects on the pulmonary air-flow patterns and the resultant particle transport and82

deposition, they connected an idealized upper airway model with the 3D trumpet,83

which can be replaced by subject-specific nasal cavity model (see Fig. 10.1b). By84

adding an artificial force in the radial directions in the trumpet, WLAM is able to85

provide reasonably accurate depositions compared to experimental data within the86

full inhalation-exhalation cycle. The trumpet was divided into multiple regions to87

represent different airway generations. Specifically, the division is done to equalize88

the regional volumes to the volumes of certain generations. Furthermore, the lung89

deformation effect was also approximately achieved by the deformation of the wall at90

the bottom of the trumpet. However, since the trumpet in WLAM is still axisymmet-91

ric, the effect of realistic asymmetric airway features were not able to be captured.92

Another limitation of the model is that it is only accurate to predict particles larger93

than 400 nm.94
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4 F. Yu et al.

Fig. 10.1 Flow-domain schematics of trumpet models: a the 2D trumpet model [13], and b the
whole-lung airway model [37] (Reprinted from [13, 37], with permission from Taylor and Francis
as well as Elsevier)

10.1.2.2 Single-Path and Multi-path Models with Truncations95

To simultaneously capture the asymmetrical effect of the airway trees and keep the96

computational efficiency high, another set of whole-lung modeling strategies is to97

truncate the branches of the lung geometry and solve the governing equations for98

one single branch coupling with appropriate boundary conditions at those truncated99

airways. Modeling the pulmonary routes from mouth/nose to G9 can be achieved100

by geometry reconstructions using clinical data. However, due to the limitation of101

medical imaging resolution, small airway reconstructions have been done by con-102

necting idealized bifurcation unit with different geometric dimensions [35, 36, 47,103

48, 75, 78]. Specifically, Zhang et al. [81] made the first effort to decompose the104

complex airway network from the trachea to G17 into a series of detached multiple105

triple bifurcation units (TBU) [80]. Using an improved modeling strategy based on106

Zhang et al. [81], Longest et al. [47, 48] developed the stochastic individual paths107

(SIP) and multiple stochastic individual paths (MSIP) approaches to represent the108

whole-lung geometry. Compared to the coupling method applied on detached airway109

geometries [80], this model is able to simulate lung aerosol dynamics with transient110

inhalation-exhalation breathing cycles.111

Also, to model the entire conductive zone, researchers developed a deterministic112

reduced lung geometry model up to G16 [75, 78]. Figure 10.2 shows the details about113
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10 Clinical CFD Applications 2 5

Fig. 10.2 Construction of the reduced lung geometry model (Reprinted from [75], with permission
from Wiley)

how the reduced lung geometry model was generated and how the boundary condition114

was defined at the truncated outlets. Specifically, coupled boundary conditions are115

applied at the truncated branches, obtained from the complete airway routes. The116

flow variables were mapped from the resolved pathway to the unresolved truncated117

branch.118

In addition, for the separate effort done for modeling the deep lung and the respi-119

ratory zone has been done by Koullapis et al. [40] using an idealized 10-generation120

bifurcation tree and acini models. The model is shown in Fig. 10.3. This model121

is capable of tracking the particles that remained suspending during the inhalation122

phase in the deep lung, and their backflow motion during the exhalation with no123

assumptions made. However, the disadvantage of this model is lack of realistic ran-124

domness of the airway morphology. Indeed, the whole airway tree was constructed125

by connecting scaled single bifurcations from the same single bifurcation geometry.126

Therefore, the branching angle and ratios of parent-to-daughter tubes diameter and127

length-to-diameter are constant for all the generations, which is not physiologically128

true. The rigid-wall assumption is another disadvantage of the aforementioned model.129

Furthermore, the acinar model employed in this model represented about 12% of the130

total acinus, which led to under-estimated acinar deposition of particles, since there131

are two additional acinar generations in the human lung.132
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6 F. Yu et al.

Fig. 10.3 The developed simplified deep lung model (Reprinted from [40], with permission from
Elsevier)

Fig. 10.4 Schematics of (a) the whole-lung model using an idealized human upper air-way model
and TBU cascades [36], and (b) the whole-lung dual-path model using an subject-specific human
upper airway model and TBU cascades

Moreover, Kolanjiyil and Kleinstreuer [36] combined an idealized upper airway133

model and a series of TBUs to generate the representative whole-lung model (see Fig.134

10.4a). Using the fluid-structure interaction (FSI) approach, this whole-lung model135

[15] is able to study the effect of alveolar deformations on the pulmonary airflow pat-136

tern and the resultant particle dynamics. However, the uniform zero-gauge pressure137

boundary conditions applied at truncated outlets may introduce errors on pulmonary138

airflow predictions. In addition, the asymmetrical and non-planar nature of the air-139

way, which influence both fluid flow and particle deposition were not considered.140

Later, Kolanjiyil and Kleinstreuer [38] built another dual-path whole lung model (see141

Fig. 10.4b). Instead of using the idealized upper airway geometry, they employed142

a subject-specific human upper airway model widely used in computational and143

numerical lung aerosol dynamics research [19, 28, 70, 71].144
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10 Clinical CFD Applications 2 7

10.1.2.3 Full 3D-1D Airway-Tree Models Without Truncations145

Efforts have been also made to achieve the whole-lung modeling capability with rea-146

sonable computational efficiency via reducing the DOF of airways without truncating147

a portion of the tracheobronchial tree. As the prototype of this type of whole-lung148

simulation strategy, the impedance model was developed which simplifies the whole149

lung airway structure using one-dimensional (1D) pipelines [72]. However, due to the150

existence of strong secondary flows in lateral directions from G1 to G6, the airflow151

field cannot be captured accurately by solving the 1D governing equation systems.152

To address such disadvantages, a fully coupled 3D-1D approach was developed153

based on asymmetric physiological characteristics of the realistic lung airway trees154

[15, 51, 57, 74, 76]. Specifically, Comerford et al. [15] utilized coupled 3D-1D mod-155

eling approach to study pulmonary mechanics of the entire conducting zone under156

mechanical ventilation. By using this method, the conducting zone of the airway157

can be modeled efficiently and results in finding important pressure and flow data.158

In this approach, pressure domain in down-stream (1D) domain obtained from the159

impedance model used to find the time dependence pressure at the outflow of the 3D160

domain. To couple 1D model to 3D model, Dirichlet or Neumann boundary condi-161

tions were employed [76]. In order to estimate the lung input impedance, Ma and162

Lutchen [51] applied a model combining 3D CFD simulation in upper and central163

airway and 1D transmission line-like model for the small airways, which they called164

hybrid computational model for the human lung. They simulated unsteady flow in165

upper airway and lower airway up to G6 with impedance (i.e., time-dependent pres-166

sure) boundary conditions. The small airways from G6 to alveoli were represented167

by corresponding small airway trees in the hypothetical airway tree model [74]. Vis-168

coelastic alveoli tissue unit was attached to the end of the conducting zone. The169

3D-1D whole-lung models are able to efficiently simulate the pulmonary airway170

fields in the entire pulmonary system. However, this modeling approach has not171

been further developed to predict the transport and deposition of inhaled particles.172

10.1.3 The Future of Whole-Lung Modeling173

For patients with pre-existing lung diseases, including emphysema, asthma, cystic174

fibrosis (CF), and idiopathic pulmonary fibrosis (IPF), etc., lung dynamic motion,175

breathing pattern, patient-specific geometries, age, and disease state are all known to176

contribute to the alteration of airflow and inhaled particle dynamics in the pulmonary177

system, yet no computational whole-lung models currently incorporates any one of178

these variables to successfully predict aerosol transport and deposition. Existing179

whole-lung models are not able to cope with the challenges to:180

– Recover the realistic real-time lung deformations considering fluid-structure inter-181

action (FSI);182

– Consider soft palate and glottis motions;183
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8 F. Yu et al.

Fig. 10.5 The next-generation 3D elastic whole-lung model covering the entire conducting and
respiratory zones

– Capture the disease-specific mucus movement and clearance of inhaled aerosols184

driven by cilia; and185

– Predict the translocation of inhaled drugs or toxicants to clinical endpoints.186

Therefore, the multiphase flow phenomena (air-mucus-aerosol transport) in the187

healthy and diseased human respiratory systems are still not comprehensively mod-188

eled and studied. Hence, there is still a gap among the whole-lung modeling capabili-189

ties, to sufficiently investigate how pre-existing lung disease including lung morphol-190

ogy and stiffness changes affect the advection and diffusion in pulmonary airways,191

the mucus movement and clearance, and the resultant variations of the inhaled ther-192

apeutic drug delivery efficiency. Thus, the future work to build the next-generation193

whole-lung model is to enable the development of per-sonalized aerosol therapeu-194

tics optimized for patient-specific variables including patient age, anatomy, breathing195

maneuvers, and pathophysiology. The next-generation whole-lung model should be196

able to answer the fundamental ques-tion of biological fluid dynamics on how the197

physiological and biomechanical feature variations between the healthy and diseased198

airways will affect pulmonary airflow dynamics, mucus movement, and the advec-199

tion and diffusion of tracing particles/gases into small airways. The next-generation200

of whole-lung model, i.e., “living lung model”, should provide a scientific basis for201

further understanding altered characteristics of diseased airways and their implica-202

tions to clinical diagnosis and treatment as well as evaluation of drug delivery. The203

most straightforward methodology is to integrate the elastic lung model [76] into the204

modeling ideas for conducting and respiratory zones [40, 75], to form the proto-type205

of the next-generation of virtual whole-lung model (see Fig. 10.5).206
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10 Clinical CFD Applications 2 9

10.2 Modeling the Effect of Airway Motion Using Dynamic207

Imaging208

Bates, Alister209

10.2.1 Introduction and Clinical Significance210

Many airway diseases involve abnormal motion of the airway wall. This motion211

may result in the airway lumen narrowing or entirely collapsing, either of which212

will affect the patient’s ability to breathe. Abnormal airway motion may occur in213

various portions of the airway. Examples include obstructive sleep apnea (OSA),214

a condition in which the upper airway collapses during sleep, often because the215

soft palate and/or tongue collapse against the posterior wall of the pharynx. Vocal216

cord dysfunction occurs when the vocal cords close abnormally during breathing.217

The larynx, trachea, and bronchi collapse in laryngomalacia, tracheomalacia, and218

bronchomalacia, respectively. Even in otherwise healthy subjects, the nasal valve219

can collapse during rapid inhalation.220

Airway motion occurs for a variety of reasons. Firstly, the air pressure within221

the airway varies throughout the breathing cycle from below atmospheric pressure222

during inhalation to above atmospheric pressure during exhalation. These pressure223

forces act on the airway walls and can cause them to collapse inwards under low224

pressures or expand outwards under high pressure.225

Secondly, the airway below the thoracic inlet (approximately one third of the way226

down the trachea) is within the thoracic cavity. Therefore, the intrathoracic pressures227

generated by the diaphragm and intercostal muscles to expand and contract the lungs228

also act on the exterior of the intrathoracic airway walls. This effect leads to conditions229

such as tracheomalacia, in which the intrathoracic pressure generated to exhale air230

from the lungs is enough to collapse the trachea. The trachea may collapse if the231

cartilaginous tissues that provide its structure are abnormally soft and are unable232

to support the membrane in the posterior tracheal wall, the trachealis. However, a233

healthy trachea may also collapse if the intrathoracic pressure becomes unusually234

high, due to respiratory demands or lung parenchyma abnormalities. In this latter235

case, the condition is known as excessive dynamic airway collapse (EDAC).236

The third mechanism for airway motion is neuromuscular control of the structures237

surrounding the airway, many of which are muscular, such as the tongue, soft palate,238

and pharyngeal walls. Opening the jaw or changing head position also alter the239

airway shape and size. Patients control these structures in order to maintain airway240

patency, but their ability to do so depends on their anatomy, ability to sense airflow,241

muscle tone, and the pressure forces they are working against. This factor also varies242

according to the subject’s level of arousal, leading to sleep related conditions such243

as OSA.244
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10 F. Yu et al.

Regardless of the location or cause of airway collapse, dynamic narrowing will245

increase the amount of energy required to respire, which is known as the work of246

breathing. The airway resistance will also increase during the portion of the breath in247

which the airway is narrowed, thereby increasing the pressure difference between the248

lungs and atmospheric pressure or limiting peak flow rates. This effect may, in turn,249

alter the patient’s respiratory flow waveform. Clinically, the important question is250

whether airway motion affects the patient’s symptoms or wellbeing due to increased251

airway resistance and/or work of breathing. CFD simulations have the potential to252

quantify these factors but require realistic airway motion to be incorporated as a253

boundary condition.254

Two approaches have been used for modelling airway motion. The first is fluid255

structure interaction (FSI). These models simulate both the airflow and the structures256

surrounding the airway by modeling structural deformations using material proper-257

ties such as Young’s Modulus. They have been employed to model passive motion258

of the airway (i.e. when the airway moves solely due to air pressure in the lumen) [2,259

62, 79, 82–84]. However, tissue properties may be difficult to calculate in vivo and260

vary significantly across the tissues surrounding the upper airway and between sub-261

jects with various pathological conditions [12]. Furthermore, neuromuscular control262

of structures surrounding the airway is difficult to predict and incorporate into FSI263

models. The tissues may move out-of-phase with the breath profile, or may move264

differently from breath to breath [58, 68]. Therefore, a second technique has been265

implemented to model conditions where neuromuscular control of the airway plays266

a significant role in airway motion, such as OSA. In this technique the in vivo motion267

of the airway is extracted from cine imaging and applied to the surface of the CFD268

model, causing the modeled airway surface to move as the real airway moves in vivo.269

This technique will be described in more detail below.270

10.2.2 3D Cine Imaging271

Three-dimensional, time varying CFD simulations require information on the airway272

motion in all directions and across the airway surface throughout the period of inter-273

est. This information can be obtained from four-dimensional (4D—time and three274

spatial dimensions) cine image volumes acquired from either computed tomography275

(CT) or magnetic resonance imaging (MRI). CT has the advantage over MRI of a276

higher contrast to noise ratio and is therefore easier to determine the position of the277

airway at each time-point in a cine image sequence. CT also allows for high spatial278

resolution (approximately 0.4 × 0.4 × 0.4 mm ) which yields accurate reconstruc-279

tion of the airway shape and motion, and lower dynamic times (i.e. the amount of280

time between one image and the next in the sequence—as low as 135 ms, which is281

half the gantry rotation time), making it more suitable for fast moving structures.282

An example of airway motion captured with CT is shown in Fig. 10.6a. However,283

the disadvantage of this modality is that CT imaging exposes subjects to ionizing284

radiation [61].285
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10 Clinical CFD Applications 2 11

Fig. 10.6 a A sagittal slice through the upper airway of an 18-year-old patient with OSA taken
from a 4D dynamic CT image. The slice is shown at three instants through a breath. There is a subtle
change in caliber of the retroglossal airway and the epiglottis moves anteriorly (red arrows). b A
sagittal slice through the upper airway of an 11-year-old patient with OSA at three instants taken
from real-time cine MRI. The retroglossal airway caliber starts narrow (left image, red arrows),
widens (central image), and then collapses completely (right image). c An axial slice showing the
intrathoracic trachea in a neonatal patient with tracheomalacia at three instants. In the first image
(left), the rear wall of the trachea has collapsed inwards creating a “D” shaped lumen (red circle).
In the central image, the rear wall has started to move posteriorly, and it keeps moving until the
trachea is almost circular (right image)

An alternative modality is MRI, which does not employ ionizing radiation and286

therefore can be used in vulnerable populations, such as children, and in serial studies287

in which patients are imaged before and after treatment or to assess disease progres-288

sion. Patients may also be imaged for long periods in order to capture particular289

events, such as airway collapse in OSA, which may only occur a few times per hour.290

MRI provides two techniques for achieving three-dimensional imaging of dynamic291

anatomy. The first is real-time cine imaging. Fast cine MRI techniques, such as292

enhanced T1 high-resolution isotropic volume excitation (THRIVE), can produce293

3D images of the airway every 300 ms, with spatial resolution of 2.0 × 2.0 × 3.0 mm294

[8]. This temporal resolution is not high enough to capture fine details of the airway295

motion, such as oscillations of the uvula due to snoring, but does capture coarse air-296

way motion. The value of this technique is the high temporal resolution and real-time297

capture of events that do not occur every breath. Figure 10.6b shows real-time MRI298

of complete collapse of the retroglossal airway in a patient with OSA.299
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12 F. Yu et al.

The second MRI approach for three-dimensional imaging of dynamic anatomy300

utilizes retrospective gating of the raw MRI data, which is modulated by respira-301

tory motion due to imaging physics. High-resolution imaging data is continually302

obtained for several minutes while the subject performs tidal breathing. The data is303

then sorted into bins depending on when in the respiratory cycle it was captured.304

Images are reconstructed from each bin of data, providing average images of the305

typical airway shape during that portion of the breath over the imaging period [29]-306

[17]. For example, data could be sorted into inspiratory and expiratory bins or into307

many shorter periods throughout the respiratory cycle. Using more bins increases the308

temporal resolution of the resultant images at the expense of the images’ signal to309

noise ratio [25]. The advantage of this method over real time cine MRI is that higher310

spatial resolution images are obtained (a CT-like submillimeter resolution, such as311

0.7 × 0.7 × 0.7 mm) and higher temporal resolution (e.g. 90 ms) is possible depend-312

ing on the required signal to noise ration and imaging duration. The disadvantage is313

that the images represent averages of the airway shape during particular periods of314

the breathing cycle rather than the instantaneous “snap shots” provided by real-time315

cine MRI. This renders the technique suitable for rhythmic airway motion such as316

tracheal collapse in patients with tracheomalacia, but unsuitable for the occasional317

upper airway collapses in patients with OSA. An example of retrospectively gated318

MRI demonstrating tracheomalacia in a premature neonate is shown in Fig. 10.6c.319

This technique has been shown to quantify similar levels of airway dynamics as320

bronchoscopy [7].321

There is significant clinical value in geometric analysis of these moving air-322

way surfaces in addition to analysis of the respiratory airflow within them. Anal-323

ysis of these airway surfaces has been used in surgical planning in neonates born324

with tracheoesophageal defects [24] and used to predict which infants with bron-325

chopulmonary dysplasia (respiratory disease of prematurity) will require a tra-326

cheotomy [23].327

10.2.3 Extracting Airway Motion from Cine Images328

Moving airway surfaces are extracted from images through segmentation and regis-329

tration. The first image in the cine image sequence of interest must be segmented as330

described in Chap. 5 segmentation) and an initial airway surface generated from the331

segmentation. If the images are real-time cine MRI, these images may not be high332

enough spatial resolution to yield a good quality surface. Therefore, a high-resolution333

static MRI can be acquired and segmented instead and registered to the initial cine334

image, [9] as described below.335

The goal of the registration is to produce a high-resolution, three-dimensional map336

of how the airway moves from each image to the next in the cine-image sequence. This337

can be achieved through image registration, surface registration, or a combination338

of both. While any non-rigid registration technique that yields suitable motion maps339

can be employed, an extension of the four dimensional joined, deformable motion-340

473808_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:28/8/2020 Pages: xxx Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f

http://dx.doi.org/10.1007/978-981-15-6716-2_5


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10 Clinical CFD Applications 2 13

Fig. 10.7 Motion vectors
between 2 frames of
real-time cine MRI (orange)
in a pediatric patient with
OSA. Between these image
frames, the patient’s soft
palate moves down, as does
the jaw. The chest expands
outwards and there is some
airway collapse around the
larynx. Each of these
motions is illustrated by
large vectors in these regions

tracking algorithm originally described by Rueckert et al. [66] has been used in the341

examples shown in this section and has been applied to the airways previously [8,342

9]. Image registration entails seeding the initial image with control points. These343

control points are then moved so that they are surrounded by a similar pattern of344

voxel intensities in the second image as they were in the first image. Adjacent control345

points are prevented from moving too far apart by a bending stiffness term. Surface346

registration requires that airway surfaces are produced based on segmentations of347

each image in the image sequence. Using these surfaces, registration moves control348

points to minimize the difference in node positions and/or surface normal vectors349

between the surface at one time point and the next.350

The registration algorithm then minimizes the sum of the dissimilarity between351

consecutive images, consecutive meshes, and the bending stiffness caused by mov-352

ing control points. Figure 10.7 shows airway motion vectors between one image and353

the next in a pediatric subject with OSA. Typical CFD time-steps for transient (i.e.354

temporally varying) simulations are much shorter than the period between images355

(<1 ms vs (O)100 ms). Therefore, the motion between each image must be inter-356

polated to much finer temporal resolution to provide smooth motion between CFD357

time-steps. Figure 10.8 shows airway surfaces from a pediatric patient with sleep358

apnea at peak inhalation and peak exhalation. The differences between the surfaces359

show how the airway has moved between these timepoints.360

10.2.4 Dynamic CFD Simulations361

Dynamic CFD simulations require the following boundary conditions: (1) the air-362

way surface at the initial time point; (2) the motion of this surface through the period363

of interest; and (3) the pressure or flow inlet and outlet boundary conditions that364
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14 F. Yu et al.

Fig. 10.8 Airway surfaces
at peak exhalation (green)
and peak inhalation (red).
The motion of the airway
between these timepoints is
shown where these surfaces
do not overlap. A
cross-sectional plane in the
larynx from each timepoint
is shown in the lower left

vary through the period of interest synchronously with airway motion. Flow rates365

throughout the breath cycle can be captured synchronously with imaging by having366

the subject breathe through a pneumotach. Recording these flow measurements syn-367

chronously with a trigger signal denoting each image acquisition allows alignment of368

airflow and motion boundary conditions, as shown in Fig. 10.9. The high frequency369

oscillations in the flow waveform represent snoring, which occurs faster than the370

temporal resolution of the MRI acquisition. However, the temporal resolution does371

allow changes to the airway between inhalation and exhalation to be captured.372

Once these boundary conditions have been obtained, a volume mesh must be373

generated based on the initial surface. The transient (i.e. boundary conditions vary374

with time [4, 6]) CFD simulations can then be performed, as described in Chap. 7.4375

(transient solutions). However, the Navier-Stokes equations must be adapted to incor-376

porate the mesh movement. The continuity and momentum equations become377

∂

∂t

∫
Ṽ

ρṼ +
∮

ρ
(
v − vg

) · da = 0 (10.1)378
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Fig. 10.9 Respiratory flow waveform (blue) and vertical red lines denoting the start time for each
cine MRI acquisition (every 320 ms in this case)

and379

∂

∂t

∫
Ṽ

ρvdṼ +
∮ (

ρ
(
v − vg

) ⊗ v
) · da = −

∮
pI · da +

∮
T · da (10.2)380

respectively, where t is time, Ṽ is the cell volume, ρ is the air density, v is the airflow381

velocity, vg is the mesh velocity as calculated from the registration, a is a vector382

representing the surface of each mesh cell, I is the identity matrix, and T is the383

viscous stress tensor.384

Once the Navier-Stokes equations are solved for the current time-step, the mesh385

must be morphed to its new position. This motion may affect the quality of the mesh,386

which is therefore checked at each time-step. Should the mesh quality fall below387

the requirements for the simulation (see Chap. 6—Meshing), the current geometry388

should be remeshed and the pressure and flow fields interpolated onto the new mesh.389

Frequent remeshing can greatly extend the time taken to perform simulations, so care390

should be taken to produce a high-quality mesh at the initial time point. Once a mesh391

of suitable quality is obtained, the inlet and outlet boundary conditions are updated392

to the flow rates and pressures presenting the new time-step, and the Navier-Stokes393

equations are solved again, starting from the solution at the previous time-step. This394

process is repeated until the entire period of interest has been simulated.395
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16 F. Yu et al.

10.2.5 Outputs from Moving Airway CFD Simulations396

The prescribed motion techniques described in this section provide boundary condi-397

tions for simulations that closely follow the dynamic behavior of the in vivo airway398

in patients with conditions such as OSA and tracheomalacia. Velocity and local399

resistance fields for a patient with OSA are shown in Fig. 10.10A and B. Standard400

CFD output measures such as airflow velocity, pressure loss, airway resistance, and401

energy flux are significantly different in moving airways compared to static airways.402

For example, one study showed a difference in airway resistance of 76% in inhalation403

and 84% in exhalation between a moving airway simulation and one performed in a404

static airway of the same anatomy at the start of the breath [8]. In addition to pro-405

viding realistic boundary conditions, moving wall CFD allows analysis of whether406

airway movement is due to passive (air pressure) motion, active (neuromuscular)407

motion, or a combination of both. For example, in OSA, muscle tone in the upper408

airway is an important factor in a patient’s ability to prevent airway collapse.409

CFD simulations calculate the pressure forces and wall shear stress acting on the410

airway wall. These can be combined to show the total force acting on each face on411

the airway wall mesh due to the airflow, Fw, as shown in equation E3, where A is412

the area of the face, p is the pressure force, n, the normal vector to the face, and τ413

the wall shear stress vector.414

Fw = A (pn + τ ) (10.3)415

Fig. 10.10 Results from a CFD simulation in a patient with OSA with airway wall motion incor-
porated. A CFD calculations of airflow velocity showing high velocities in narrow portions of the
airway. B Resistance per cm of airway traversed by the air-flow highlighting portions of the airway
responsible for high resistance. C Aerodynamic force vectors (pressure plus wall shear stress). Inter-
nal pressure forces pull the airway inwards during inhalation and push outwards during exhalation.
D The cause of airway motion determined by comparison of the direction of aerodynamic forces
and the direction of motion of the airway wall. Causes of motion are due to neuromuscular control
(blue), aerodynamic forces (red), or no motion (white)
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Figure 10.10c shows the forces acting on the airway wall in a patient with OSA.416

Taking the vector dot product of this force with the prescribed airway wall velocity417

vw at each airway wall face allows the power transfer, P, between the airway wall418

and the airflow to be calculated (Eq.10.3).419

P = vw · Fw (10.4)420

This calculation determines the cause of motion between motion due to air pres-421

sure forces (passive motion) and motion caused by the airway through neuromuscular422

control. When the value is positive, the air pressure force is acting in the same direc-423

tion as the motion of the airflow (for example, airway collapse due to sub-atmospheric424

air pressure in the airway), and therefore the cause of airway motion is likely to be due425

to airflow. However, when the airway motion and air pressure forces are in opposite426

directions or orthogonal to one another, the air pressure force cannot be the cause427

of motion, and P will be negative. Figure 10.10D shows the instantaneous power428

transfer between the air and the airway wall at peak inhalation and peak exhalation429

in a patient with OSA. This map shows regions where the airway is able to maintain430

patency due to neuromuscular control (blue) and where it is collapsing due to air431

pressure force acting on it (red).432

10.2.6 Clinical Implications of Moving CFD Simulations433

CFD simulations have previously revealed how airflow characteristics influence434

patient symptoms in patients with conditions such as stenotic tracheas, [52, 55] com-435

pressive goiters, [3, 5]. CFD simulations with realistic motion determined from cine436

imaging allows respiratory CFD to be applied to a wider set of airway conditions such437

as OSA and provides extra information that may aid in clinical decision-making. For438

example, surgical success rates in OSA are highly variable, as the location, cause,439

and degree of airway collapse varies between patients. CFD modeling may allow440

surgeries to be better matched to patients by calculating the regions of highest resis-441

tance (e.g. Fig. 10.10b), which indicate candidate sites for surgeries. The causes of442

airway collapse can also be separated into passive and neuromuscular, thereby reveal-443

ing the degree of muscle tone and neuromuscular control in the patient. Finally, the444

airway component of the work of breathing can be calculated, allowing the energy445

expense of airway abnormalities to be quantified. Clinically, this can be used to446

develop thresholds to determine when treatments should be applied. Basing these447

decisions on energy expenditure rather than qualitative anatomic observations may448

allow treatment strategies to better match patient symptoms. Furthermore, in patients449

with various respiratory comorbidities, symptoms due to airway abnormalities can450

be separated from parenchymal respiratory issues, allowing treatments to be targeted451

to the regions of the respiratory symptom most responsible for symptoms452
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10.3 Automatic Reconstruction of the Nasal Geometry453

from CT Scans454

Koch Walter, Lehner Matthias, Benda Odo, Ortiz Ramiro, Koch Gerda455

456

10.3.1 Introduction457

Accurate reconstruction of human nasal geometry is a critical prerequisite for realis-458

tic CFD simulations of nasal airflow. Fur-thermore, it is desirable that reconstruction459

can be performed rapidly and with minimal human intervention. Ideally, the recon-460

struction process can be automated completely while yielding anatomically plausi-461

ble results immediately. From a clinical perspective, fast and accurate reconstruction462

would enable physicians as well as patients themselves to examine the nasal cavity463

and paranasal sinuses in an intuitive three-dimensional manner. Moreover, quickly464

obtained 3D models of air-filled cavities and bone provide a means for automated465

pathology detection, an extensive topic in its own right which will not be addressed in466

this chapter. From a scientific and engineering perspective, minimally time-intensive467

yet anatomically truthful 3D reconstructions enable the CFD specialist to focus on the468

investigation of nasal aerodynamics. Instead of having to expend excessive time and469

effort on image segmentation and 3D modelling, once a viable automated solution470

is available, researchers can concentrate on the in silico analysis of airflow and the471

verification of simulation results using experimental data. The latter can be obtained472

from sensors placed on 3D-printed models and measurements performed on patients.473

In recent years, deep learning [41] algorithms have led to significant improvements474

in computer vision by outperforming techniques which were previously considered475

state-of-the-art [77]. A particular type of deep learning algorithm called a Convolu-476

tional Neural Network (CNN), which is most commonly used for image analysis (e.g.477

handwriting recognition [42, 43], outperforms classical approaches in many com-478

puter vision tasks. Medical image segmentation is one such task where promising479

results have been obtained in recent years. G. Litjens et al. [46] conducted a survey480

which included over 300 publications on applications of deep learning to medical481

image analysis published from 2012 to 2017. The survey showed that CNNs have482

become the prevailing deep learning algorithm in medical image analysis deduced483

by the number of papers published in the field which used them. In addition, image484

segmentation turned out to be the task they were most commonly applied to, with485

MR and CT images being two of the imaging modalities predominantly used. CNN486

architectures have, for instance, successfully been applied to segment brain tumors487

[30], brain lesions [31] and different brain tissues [69] in MRI, fluid abnormalities488

in OCT images [67], heart substructures in cardiac US [60] as well as pancreas489

[64], bladder [11], liver [50] and liver tumors [14] in CT images (cf. overviews of490

publications by topic and imaging modality in G. Litjens et al. [46]).491
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10 Clinical CFD Applications 2 19

Based on previous work by Maninis et al. (2016) on retinal vasculature and optic492

disc segmentation in eye fundus images [53], we have developed CNN architectures493

which automate accurate segmentation of CT scans of the sinonasal cavities. The494

highly accurate results obtained for the thin blood vessels of the retina served as495

a good starting point for our work as the nasal cavity, ethmoid air cells and bones496

surrounding the cavities are similarly delicate (the frontal, maxillary and sphenoid497

sinuses are easier to segment because they constitute comparatively large, connected498

areas of pixels with similar intensity values).499

Our CNNs work in an end-to-end fashion. This means that the CNN acts as a500

function which receives minimally preprocessed CT images as input and directly501

returns the corresponding 2D segmentations as output. The CNN assigns a class502

(e.g. air or not air, where 1 corresponds to air and 0 corresponds to not air) to each503

pixel. From the 2D segmentations, 3D models can then be generated. For instance,504

triangular surface meshes can be created using the Marching Cubes algorithm [49].505

Note that it is also possible to implement CNNs which directly classify each voxel in506

a CT volume, i.e. to perform 3D segmentation [56]. We started with a 2D approach507

which is easier to implement and retained it because we obtained the desired results.508

In an initial phase, we developed separate CNNs which perform 2D segmentations509

of either air-filled regions or bone only, i.e. binary segmentations where white is510

either air or bone and black is everything else. Figure 10.11 shows two sample CT511

slices, the air and bone segmentation our CNNs computed for these and the 3D model512

generated from the segmentations of all slices of this patient’s CT volume. Note that513

the air surrounding the patient’s head has been removed in a post processing step and514

is therefore not visible in the air 3D model.515

Fig. 10.11 CT slices, corresponding automatic segmentations and 3D models generated from these
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20 F. Yu et al.

10.3.2 How Does a CNN Work and How Can a CNN Be516

Trained to Segment CT Images?517

This section will give an overview of what a CNN does and how it can be used for518

image segmentation. A CNN is a type of Artificial Neural Network (ANN) which519

processes images or other data represented by a grid-like topology. Digital images520

can be represented as matrices of real-valued pixel intensity values. In the case of521

grayscale CT images, each pixel has a single intensity value which represents the522

brightness of the pixel (shade of gray). We want the CNN to learn to infer whether a523

given pixel should be classified as either air or not air (or as either bone or not bone,524

i.e. as one class or the other). A CNN can achieve this goal by using several layers525

which perform different mathematical operations. These operations allow a CNN to526

extract information about the neighbourhood of a given pixel to decide if the pixel527

should belong to one class or the other.528

Our CNN architecture consists of multiple Convolution Layers, each followed by529

a Nonlinearity (ReLU Layer) and a Max Pooling Layer. The most important layer,530

the one which gives the CNN its name, performs a (discrete) convolution and is531

hence called a Convolution Layer. It performs an element-wise multiplication of532

pixel intensity values in a neighbourhood of each pixel of the input image with the533

scalar elements of a so called filter matrix, followed by addition of the re-sulting534

terms (linear combination) [18]. This is how image filters (kernels) work. The result535

is a new image (matrix) called a feature map. Applying a convolution matrix to an536

image filters it to extract certain features. Note that in mathematics, the described537

operation is called a cross-correlation, but in the context of image processing the538

term convolution is used. A CNN’s architecture is loosely inspired by the workings539

of neurons in the human visual system as the neighbourhood around a given pixel540

can be viewed as a receptive field and the connectivity pattern of the neurons of a541

CNN bears resemblance to visual cortex organization [26].542

Typically, a nonlinear function (most often a so-called rectified linear unit, ReLU)543

is applied to the output of the convolution. This makes the output a non-linear function544

of the inputs. By applying many convolutions to an input image, a CNN can extract545

different features from an image. Each convolution results in a different feature map.546

By combining the information from many such feature maps, a CNN can then assign547

a certain class to each pixel of an input image.548

Furthermore, convolutions can also be applied to the feature maps themselves to549

obtain additional feature maps. By using multiple successive Convolutional Layers,550

more abstract features can be extracted (e.g. an initial layer may provide information551

about simple geometric features like edges, a deeper layer may involve more abstract552

features like the general shape of a given cavity, i.e. one obtains a feature hierarchy).553

Using several layers in this way makes a neural network deeper, hence the term deep554

learning. In our CNNs, a volume of feature maps is linearly combined to obtain a555

single prediction matrix containing real values. The values in this matrix can then556

be mapped to probabilities in (0, 1) by applying a so called activation function (e.g.557

a sigmoid function). In a final step, a threshold is applied to this probability matrix.558
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This sets each value greater than or equal to 0.5 to 1 (air) and each value less than559

0.5 to 0 (not air), thereby obtaining a binary segmentation.560

The elements of a convolution matrix are called weights. In traditional image561

processing, the programmer specifies the weights of a convolution matrix to achieve562

a desired effect (e.g. sharpening of an image). Using a CNN, the task of assigning563

a class to each pixel in an image can be formulated as a mathematical optimization564

problem where a cost function is minimized. Weights can be initialized randomly and565

are improved over time rather than being manually specified by the programmer at the566

outset. The CNN is fed with pairs of CT images and manual segmentations as inputs.567

Each input helps the CNN learn better values for the weights, where better means that568

the cost becomes smaller, which itself means that the CNN outputs a segmentation569

which is more similar to the manual segmentation it is provided with (which serves570

as an example for what the desired output looks like). This way the CNN becomes571

progressively better at segmenting images by learning from examples. Figure 10.12572

shows an illustration of the basic architecture of our CNN (for 2 Convolutional573

Layers, we use up to 4, but some of our best CNNs only use a single layer).574

A CNN is trained with so-called supervised learning. This means that a CNN is575

provided with training data in the form of input-output pairs (CT images paired with576

segmentations which are manually created by a human expert) where the provided577

outputs tell the CNN what the desired output is supposed to look like for new inputs.578

This allows the CNN to learn from the provided examples. Once fully trained, the579

CNN can segment CT images it has not seen before. Segmentation and 3D model580

generation for an entire CT volume of e.g. 1000 slices is then reduced to 3 min instead581

of several days. The so-called labelled data consists of CT images of different patients582

(DICOM files obtained from partnering clinics) and manual segmentations created583

for them. We use 256 × 256 px partial images (our CT images have a resolution584

of 512×512 px, we use only a region of interest) of axial slices. The Hounsfield585

unit range is mapped to [0, 1] as a pre-processing step. Rotated and scaled versions586

of these axial CT slices can also be included in the dataset to create more data587

artificially (data augmentation). Segmentations for a subset of patients were created588

manually, this took several days. The manual segmentations were then inspected589

visually and checked for accuracy and anatomical plausibility by a practicing ENT590

(Ear-Nose-Throat) surgeon. Three datasets (training, validation and test set) were591

created from these images, where each dataset consists of both, CT images and592

their corresponding manual segmentations. First, the training set was used to train593

many CNNs with different so-called hyperparameters (described in the following594

paragraphs). Second, the validation set was used to select the top-performing CNN595

from these. Third, since this selection process can lead to overfitting on the validation596

set, the performance was confirmed by assessing the CNN’s performance on the test597

set. As a heuristic, training, validation and test set often constitute 60%, 20% and598

20% of the entire, randomized dataset.599

In each iteration a single CT image is passed through the CNN to generate seg-600

mentations (forward pass). The cost, for instance the cross entropy between the601

probability matrix and the human segmentation, averaged over all images used, is602

then propagated back to update the weights (backward pass, back propagation of603
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Fig. 10.12 Basic architecture of our binary segmentation CNNs (for either air or bone segmentation)

errors). This process is called stochastic gradient descent (if one training image is604

used each iteration and gradient descent is taken to perform updates of the weights).605

A step size (learning rate) is set to specify how much the weights should be adjusted606

within each iteration. Performing this process iteratively improves the weights and607

hence the obtained segmentations. The learning process is stopped once certain met-608

rics are met, for instance once the accuracy (percentage of pixels which are the same609

in both CNN and human segmentation) is high enough. CNNs with different hyper-610

parameters (number of layers, number and size of filter matrices, step sizes etc.) are611

trained and the top performing ones selected using the validation and test sets. We612

obtained good results for a constant step size of 0.01 using up to 10 filter matrices613
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Fig. 10.13 CNN air and bone segmentation results compared to segmentations generated by a
human

of size 3×3 or 5×5 for each Convolution Layer, 1 to 4 layers in total, mean cross614

entropy as the cost function and either Adam or Momentum as optimizer to per-615

form stochastic gradient descent [32, 65]. The CNNs were trained for about 1000 to616

5000 iterations on an NVIDIA GTX 1080 GPU and stopped once requirements for617

metrics such as accuracy, overlap (Jaccard index) and similar number of connected618

components were met.619

Figure 10.13 shows a comparison of automated and human segmentations obtained620

for 2 sample CT images. Our top performing CNNs achieve an accuracy of 99–96%621

for air segmentation and an accuracy of 95–96% for bone segmentation. The latter is622

more difficult because bones and surrounding tissue often have very similar intensity623

values and are often hard to distinguish even for human experts due to the noise624

in the CT images. Figure 10.14 illustrates how the segmentation outputs of a CNN625

improve over time.626

In a second phase, motivated by the good results for binary segmentations, we627

developed a CNN which, instead of predicting for a single pixel whether it belongs628

to a single class or not, predicts whether the pixel belongs to one of multiple classes.629

This is achieved by performing a different linear combination of the feature map630

volume for each class, which results in a vector of class probabilities for each pixel.631

The predicted class is then given by the largest element of this vector. We trained632

CNNs for either 11 classes (left/right frontal/sphenoid/maxillary sinus, nasal cavity,633

oral cavity, air outside, bone and tissues) or 9 classes (left/right frontal/sphenoid634
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Fig. 10.14 CNN segmentation results for a single CT image during the first 30 iterations of training
(CT image is taken from validation set; to update weights during training, a different CT image is
used in each iteration)

sinus, left and right maxillary sinuses combined, nasal and oral cavity combined, air635

outside, bone and tissues). The maxillary sinuses are not adjacent to each other as636

they are located on opposite sides of the head. They can therefore be combined into637

a single layer and are easily separated later once the 3D model has been generated.638

Oral and nasal cavities need not necessarily be separate segments if one does not639

want to distinguish between the two. In general, a lower number of classes is easier to640

process accurately for the CNN. Figure 10.15 shows preliminary results obtained for641

2 sample CT slices by a CNN trained to distinguish 11 different classes. By learning642

a distinct class for each type of cavity and tissue, the CNN also learns to distinguish643

air from bone more accurately and there is no overlap between any of the segments.644
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Fig. 10.15 Axial CT slices, the multi-class segmentations computed by a CNN, and the 3D models
generated from these

As some classes are found in more CT images than others, form components645

of different size than others and make up different percentages of the total number646

of pixels, class balancing techniques may be required (e.g. focal loss [44] or an647

adequate sampling strategy [10, 63]). At the moment, the CNNs we have trained do648

not learn each class similarly well. Hence we are currently in the process of optimizing649

our results for multi-class segmentation by experimenting with different approaches650

to handle imbalanced classes. Once our approach has been refined, accurate 3D651

models of bone, tissues and individual cavities shall be obtained for new patients652

within minutes. Currently, this research work is partly funded by the COIN/IraSME653

project Rhinodiagnost, Morphological and Functional Precision Diagnostics for the654

Nose [45].655
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Armbruster, F. Hofmann, M. DÂĂŹAnastasi et al., Automatic liver and lesion segmentation694

in ct using cascaded fully convolutional neural networks and 3d conditional random fields, in695

International Conference on Medical Image Computing and Computer-Assisted Intervention696

(Springer, Berlin, 2016), pp. 415–423697

15. A. Comerford, C. Forster, W.A. Wall, Structured tree impedence outflow boundary conditions698

for 3d lung simulations. J. Biomechan. Eng. 132, 10 (2010)699

16. J. Dong, Y. Shang, K. Inthavong, H.-K. Chan, J. Tu, Numerical comparison of nasal aerosol700

administration systems for efficient nose-to-brain drug delivery. Pharm. Res. 35(1), 5 (2018)701

17. G. Dournes, D. Grodzki, J. Macey, P.-O Girodet, M. Fayon, J.-F. Chateil, M. Montaudon, P.702

Berger, F. Laurent (2015) Quiet submillimeter mr imaging of the lung is feasible with a petra703

sequence at 1.5 t. Radiology 276(1), 258–265704

18. V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning. arXiv:1603.07285705

(2016)706

19. Y. Feng, C. Kleinstreuer, Analysis of non-spherical particle transport in complex internal shear707

flows. Phys. Fluids 25(9), 091904 (2013)708

20. Y. Feng, Z. Xu, A. Haghnegahdar, Computational fluid-particle dynamics modeling for uncon-709

ventional inhaled aerosols in human respiratory systems. Aerosols-Science and Case Studies710

(2016)711

21. Y. Feng, J. Zhao, C. Kleinstreuer, Q. Wang, J. Wang, D.H. Wu, J. Lin, An in silico inter-712

subject variability study of extra-thoracic morphology effects on inhaled particle transport and713

deposition. J. Aerosol Sci. 123, 185–207 (2018)714

22. A. Haghnegahdar, Y. Feng, X. Chen, J. Lin, Computational analysis of deposition and translo-715

cation of inhaled nicotine and acrolein in the human body with e-cigarette puffing topographies.716

Aerosol Sci. Technol. 52(5), 483–493 (2018)717

23. N. Higano, A. Bates, E. Hysinger, I. St. Onge, R. Fleck, P. Kingma, J. Woods, Dynamic tracheal718

collapse and correlation to later tracheostomy in neonates with bronchopulmonary dysplasia via719

quantitative ultrashort echo-time mri, in C16. Clinical Studies in Bronchopulmonary Dysplasia720

(American Thoracic Society, New York, 2019), pp. A4264–A4264721

24. N.S. Higano, A.J. Bates, J.A. Tkach, R.J. Fleck, F.Y. Lim, J.C. Woods, P.S. Kingma, Pre-722

and post-operative visualization of neonatal esophageal atresia/tracheoesophageal fistula via723

magnetic resonance imaging. J. Pediatr. Surg. Case Rep. 29, 5–8 (2018)724

25. N.S. Higano, A.D. Hahn, J.A. Tkach, X. Cao, L.L. Walkup, R.P. Thomen, S.L. Merhar, P.S.725

Kingma, S.B. Fain, J.C. Woods, Retrospective respiratory self-gating and removal of bulk726

motion in pulmonary ute mri of neonates and adults. Magn. Reson. Med. 77(3), 1284–1295727

(2017)728

473808_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:28/8/2020 Pages: xxx Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f

http://arxiv.org/abs/1603.07285


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10 Clinical CFD Applications 2 27

26. D.H. Hubel, T.N. Wiesel, Receptive fields and functional architecture of monkey striate cortex.729

J. Physiol. 195(1), 215–243 (1968)730

27. K. Inthavong, Z. Tian, J. Tu, W. Yang, C. Xue, Optimising nasal spray parameters for efficient731

drug delivery using computational fluid dynamics. Comput. Biol. Med. 38(6), 713–726 (2008)732

28. T. Janke, P. Koullapis, S. Kassinos, K. Bauer, Piv measurements of the siminhale benchmark733

case. Eur. J. Pharm. Sci. 133, 183–189 (2019)734

29. K.M. Johnson, S.B. Fain, M.L. Schiebler, S. Nagle, Optimized 3d ultrashort echo time pul-735

monary mri. Magn. Reson. Med. 70(5), 1241–1250 (2013)736

30. K. Kamnitsas, E. Ferrante, S. Parisot, C. Ledig, A.V. Nori, A. Criminisi, D. Rueckert, B.737

Glocker, Deepmedic for brain tumor segmentation, in International workshop on Brainlesion:738

Glioma, multiple sclerosis, stroke and traumatic brain injuries (Springer, Berlin, 2016), pp.739

138–149740

31. K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert,741

B. Glocker, Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion742

segmentation. Med. Image Anal. 36, 61–78 (2017)743

32. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)744

33. L. Koblinger, W. Hofmann, Analysis of human lung morphometric data for stochastic aerosol745

deposition calculations. Phys. Med. Biol. 30(6), 541–556 (1985)746

34. L. Koblinger, W. Hofmann, Monte carlo modeling of aerosol deposition in human lungd. part747

i: Simulation of particle transport in a stochastic lung structure. J. Aerosol Sci. 21(5), 661–674748

(1990)749

35. A.V. Kolanjiyil, C. Kleinstreuer, Nanoparticle mass transfer from lung airways to systemic750

regions—part i: Whole-lung aerosol dynamics. J. Biomechan. Eng. 135(12), 11 (2013)751

36. A.V. Kolanjiyil, C. Kleinstreuer, Nanoparticle mass transfer from lung airways to systemic752

regions—part ii: Multi-compartmental modeling. J. Biomech. Eng. 135, 12 (2013)753

37. A.V. Kolanjiyil, C. Kleinstreuer, Computationally effecient analysis of particle transport and754

deposition in a human whole-airway model. part i: theory and model validation. Comput. Biol.755

Med. 76, 193–204 (2016)756

38. A.V. Kolanjiyil, C. Kleinstreuer, Computational analysis of aerosol-dynamics in a human757

whole-lung airway model. J. Aerosol Sci. 114, 301–316 (2017)758

39. A.V. Kolanjiyil, C. Kleinstreuer, R.T. Sadikot, Computationally efficient analysis of particle759

transport and deposition in a human whole-lung-airway model. part ii: Dry powder inhaler760

application. Comput. Biol. Med. 2017, 247–253 (2017)761

40. P. Koullapis, P. Hofemeier, J. Sznitman, S. Kassinosa, An efficient computational fluid-particle762

dynamics method to predict deposition in a simplified approximation of the deep lung. Eur. J.763

Pharm. Sci. 113, 132–144 (2018)764

41. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)765

42. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel,766

Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551767

(1989)768

43. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., Gradient-based learning applied to document769

recognition. Proc. IEEE 86(11), 2278–2324 (1998)770

44. T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in771

Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)772

45. A. Lintermann, J. Göbbert, K. Vogt, W. Koch, A. Hetzel, Rhinodiagnost-morphological and773

functional precision diagnostics of nasal cavities. InSiDE, Innov. Supercomput. Dtsch. 15(2),774

106–109 (2017)775

46. G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak,776

B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis. Med.777

Image Anal. 42, 60–88 (2017)778

47. P.W. Longest, G. Tian, R. Delvadia, M. Hindle, Development of a stochastic individual path779

(sip) model for predicting the deposition of pharmaceutical aerosols: Effects of turbulence,780

polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Sci. Technol. 46(12),781

1271–1285 (2012)782

473808_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:28/8/2020 Pages: xxx Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f

http://arxiv.org/abs/1412.6980


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

28 F. Yu et al.

48. P.W. Longest, G. Tian, N. Khajeh-Hosseini-Dalasm, M. Hindle, Validating whole-airway cfd783

predictions of dpi aerosol deposition at multiple flow rates. J. Aerosol Med. Pulm. Drug Deliv.784

29(6), 461–481 (2016)785

49. W.E. Lorensen, H.E. Cline, Marching cubes: A high resolution 3d surface construction algo-786

rithm, in ACM siggraph computer graphics, vol. 21 (ACM, New York, 1987), pp. 163–169787

50. F. Lu, F. Wu, P. Hu, Z. Peng, D. Kong, Automatic 3d liver location and segmentation via788

convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 12(2), 171–789

182 (2017)790

51. B. Ma, K.R. Lutchen, An anatomically based hybrid computational model of the human lung791

and its application to low frequency oscillatory mechanics. Ann. Biomed. Eng. 34(11), 1691–792

1704 (2006)793

52. M. Malvè, A. Pérez del Palomar, S. Chandra, J. López-Villalobos, A. Mena, E. Finol, A. Ginel,794

M. Doblaré, Fsi analysis of a healthy and a stenotic human trachea under impedance-based795

boundary conditions. J. Biomech. Eng. 133, 2 (2011)796

53. K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, L. Van Gool, Deep retinal image understanding,797

in International conference on medical image computing and computer-assisted intervention798

(Springer, Berlin, 2016), pp. 140–148799

54. T.B. Martonen, Analytical model of hygroscopic particle behavior in human airways. Bull.800

Math. Biol. 44(3), 425–442 (1982)801

55. M. Mihaescu, E. Gutmark, R. Elluru, J.P. Willging, Large eddy simulation of the flow in a802

pediatric airway with subglottic stenosis, in 47th AIAA Aerospace Sciences Meeting including803

The New Horizons Forum and Aerospace Exposition, p. 775 (2009)804

56. F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural networks for volumetric805

medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV), pp.806

565–571 (2016)807

57. M. Monjezi, R. Dastanpour, M.S. Saidi, A.R. SPishevari, Prediction of particle deposition in808
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over character

new character 

new characters 

through all characters to be deleted

through letter   or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character    or

where required

between characters or

words affected

through character    or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you  

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly


