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8.1 Introduction

8.1.1 Machine Learning in Medical Imaging

Machine learning algorithms are very effective at using medical imaging to study specific
diseases. Numerous machine learning methods have been used to analyze medical
images, such as linear discriminant analysis, support vector machines (SVMs), decision
trees, and random forests. Pixel/voxel-based machine learning (PML) model emerged
in medical image analysis, which uses pixel/voxel values in images directly instead of fea-
tures calculated from segmented objects as input information (Suzuki 2012). Machine
learning algorithms can also combine with the computational aerosol dynamics method
for lung disease diagnosis. The exhaled aerosol patterns that were simulated by compu-
tational fluid dynamics (CFD) with different asthma conditions were categorized using
fractal analysis and SVMs classification as well as random forest (Xi et al. 2015; Xi and
Zhao 2019).

8.1.2 Deep Learning in Medical Imaging

Both the 2-dimensional and 3-dimensional structures of an organ being studied are crucial
in order to identify what is normal versus abnormal. By maintaining these local spatial rela-
tionships, convolutional neural networks (CNNs) are well suited to perform image recog-
nition tasks (Ker et al. 2018). CNNs can also be used for classification, localization,
detection, and segmentation (Jiao et al. 2020).
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Figure 8.1 Modified ResNet50

architecture.

8.2 (CNN-Based Models for
Classification

8.2.1 ResNet50

As shown in Figure 8.1, ResNet50 is a 50-layer residual
network. The main goal is to build a deeper neural net-
work based on a modified ResNet50 without encounter-
ing the vanishing gradient problem (Hochreiter et al.
2001). The error gradients are computed at the end of
the network. Backpropagation (Goodfellow et al. 2016)
is used to propagate the error gradients backward through
the network. Using the chain rule (Goodfellow et al.
2016), terms are multiplied with the error gradients and
have to be kept as the networks go backward. However,
in the long chain of multiplication, the gradient becomes
very small as networks approach the earlier layers in a
deep architecture. This small gradient is an issue because
network parameters cannot be updated by a large enough
amount and the training is very slow. To avoid the van-
ishing gradient problem, ResNet50 stacks these residual
blocks together where an identity function is used to pre-
serve the gradient. It is also called skip connection since
the origin input is added to the output of the convolution
block directly. The structure of the skip connection is
shown in Figure 8.2 (He et al. 2016).

As shown in Figure 8.1, the input image goes through
the first layer with 64 filters, with a filter size of 7 x 7.
Next, it goes through the max-pooling layer, which helps
reduce the spatial size of the convolved features and
helps reduce the over-fitting problem. Then, it goes
through 48 convolutional layers with skip connection
and finally reaches the fully connected layer that helps
learn nonlinear combinations of the high-level features
outputted by previous layers. In the modified ResNet50
model employed in this study, parameters of the pre-
trained convolutional layers on the ImageNet dataset
(Deng et al. 2009) were used. The final pooling and fully
connected layer in the original ResNet50 model were
replaced by global average pooling and a dense output
layer, in order to connect the dimensions of the previous
layers with the new layers for classification of our own
dataset. Regularization methods (e.g. batch norma-
lization and dropout) and optimizers were used to
avoid over-fitting and reduce computational time (He
et al. 2016).
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Figure 8.2 The residual learning building blocks: (a) regular block and (b) residual block.

8.2.2 YOLOv4 (Darknet53)

One popular state-of-the-art CNN-based model for detecting objects in an image is “You
Only Look Once” or YOLO (Redmon et al. 2016). YOLO version 3 (YOLOv3) expands
on its previous version, YOLOV2, by utilizing a Darknet53 (53 convolutional layers) as
its backbone in contrast to YOLOvV2, which utilized Darknet19 (19 convolutional layers)
(Redmon and Farhadi 2017). Although the precision has been greatly improved in YOLOv3
compared with YOLOV2 due to the increased number of convolutional layers, the resul-
tantly increased computational complexity also makes YOLOv3 more computationally
expensive. To optimize the balance between precision and computational efficiency,
YOLOV4 has been developed to improve both the precision and speed of YOLOvV3. YOLOv4
is considered as one of the most accurate real-time neural network detectors to date
(Bochkovskiy et al. 2004). YOLOv4 has been successfully applied in various industries,
including autonomous driving, agriculture, electronics, public health, etc. (Li et al. 2020;
Cai et al. 2021; Kajabad et al. 2021; Sozzi et al. 2021). In this study, YOLOv4 was employed
and tested for classifying the lung obstruction locations, including left lung, right lung, and
both lungs.

YOLOV4 consists of three main blocks, including the “backbone,” “neck,” and “head”
(Bochkovskiy et al. 2004). The “backbone” implements feature extraction. The model
implements the Cross Stage Partial Network (CSPNet) backbone method to extract features
(Wang et al. 2020), containing 53 convolutional layers for accurate image classification, also
known as CSPDarknet53. The “neck” is a layer between the “backbone” and “head” that
implements feature aggregation. Specifically, YOLOv4 uses the Path Aggregation Network
(PANet) for feature aggregation (Liu et al. 2018) and Spatial Pyramid Pooling (SPP) method
to set apart the important features obtained from the “backbone” (Liu et al. 2018). The
“head” used in YOLOV4 is the same as the one in YOLOv3, which uses dense prediction
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for anchor-based detection that helps divide the image into multiple cells and inspect each
cell to find the probability of having an object using the post-processing techniques
(Redmon et al. 2016).

8.2.3 Grad-CAM

In practice, deep learning models are treated as “black box” methods. To enhance the fun-
damental understanding of where the CNN-based models are “looking” in the input image,
a simple modification of the global average pooling layer combined with Grad-CAM
(Rajasegarar et al. 2007) allows the classification-trained CNN to both classify the image
and localize class-specific image regions. The gradient of the chosen convolutional layer
is converted to weight. Then the 1D vector that stored the number of filters is reshaped
to the image shape. After the layer output and weight are computed and normalized, the
heat map showing the highly correlated regions of input for predictions is created. By
generating such visual explanations, Grad-CAM makes the CNN-based model more
transparent and insightful.

8.3 Case Study

8.3.1 Background

According to the National Vital Statistics Report (Hamilton et al. 2013), chronic obstructive
pulmonary disease (COPD) is the third leading cause of death in America. COPD causes
severe breathing difficulty due to airway stiffening, loss of airway deformation capability,
and airway blockage induced by inflammation especially in small airways, which are
regarded as the silent zone in the respiratory system (Yi et al. 2021; Rajendran and Banerjee
2020; Pramanik et al. 2021). Inhalation of therapeutic nano-/microparticles is the standard
COPD treatment, but delivering a sufficiently high dose of therapeutic nano-/microparticles
to obstruction sites in small airways has remained the long-standing barrier preventing the
desired therapeutic outcomes.

To overcome such a barrier, it is important to detect the obstruction locations in small
airways of COPD patients at an early stage and optimize the inhalation therapy to achieve
targeted drug delivery to designated obstruction sites, instead of healthy airway tissues, for
better therapeutic outcomes and reduced side effects. However, there is strong evidence to
suggest that most patients are not aware of their small airway obstruction conditions at the
early stage, due in part to the invasive nature of conventional diagnostic methods (Jindal
2012; Burgel et al. 2013; Deepak et al. 2017). Specifically, traditional methods to diagnose
pulmonary diseases involve costly and invasive procedures such as X-ray screening and
bronchoscope. Thus, it is imperative and beneficial to detect the obstruction locations in
the peripheral lung precisely with noninvasive diagnostic methods.

This case study proposes and tests the feasibility of a new diagnostic methodology using
both CFD and CNN. The new methodology is able to identify the obstruction location in the
left lung, right lung, or both lungs using hyperpolarized magnetic resonance imaging (MRI)
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8.3 Case Study

(Salerno et al. 2001; Walkup and Woods 2014; Roos et al. 2015; Walkup et al. 2016). The
method was driven by a central hypothesis enlightened by existing preliminary studies
(Sul et al. 2018). The small airway obstruction will lead to detectable velocity distribution
pattern shift of the expiratory airflow in the trachea. Specifically, based on the training and
test data generated using the CFD simulation results of expiratory airflows in a subject-
specific human tracheobronchial tree (trachea to G6), two CNN-based classification models
were developed using open-source codes, e.g. ResNet50 and YOLOv4 (Darknet53)
(Bochkovskiy et al. 2004). The modified ResNet50 model is a 50-layer residual network,
and it was the winner of the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)in 2015. The main goal of the residual network is to build a deeper neural network
without the problem of vanishing gradients. To further analyze which regions suggest the
obstruction locations, Gradient-weighted Class Activation Mapping (Grad-CAM) was
applied to produce a coarse localization map highlighting the important regions (Daibo
2017). The results have also been validated by Darknet53, which acts as a backbone for
the YOLOV4 object detection approach. (Li et al. 2020; Cai et al. 2021; Kajabad et al.
2021; Sozzi et al. 2021).

Two CNN-based models, e.g. modified ResNet50 and YOLOV4, are trained by CFD expir-
atory velocity contours in a subject-specific 3D tracheobronchial (TB) tree with 990 obstruc-
tion conditions at small airway terminals to automatically classify COPD airway obstruction
locations. Grad-CAM and hue-value-saturation (HSV) thresholding techniques were
employed to classify COPD obstruction locations and velocity contour pattern shifts in
the lung and highlight the highly correlated regions in the contours for locating the obstruc-
tion sites.

8.3.2 Study Design

Based on the central hypothesis, the workflow of the training and test of the two CNN clas-
sification models are shown in Figure 8.3a and b. A subject-specific TB tree from the trachea
to G6 was employed for the expiratory flow simulations using CFD. An experimentally vali-
dated CFD model (Feng et al. 2018) was employed to predict expiratory intrathoracic flow
velocity distributions through the TB tree with 1 normal airway and 990 airway obstruction
conditions. Using the airflow velocity distribution data labeled by the obstruction locations,
two CNN-based classification models were trained and tested.

8.3.3 Training and Testing Database Preparation

As shown in Figure 8.3a and b, the preparation of the training and test database used the
CFD simulation results for the expiratory flow field predictions with different obstruction
conditions in the subject-specific TB tree. Specifically, only 1 or 2 of the 44 small airway
openings were blocked for each simulation case in order to mimic the minimum changes
in obstruction conditions in the human lung compared with the obstructions of multiple
openings in left, right, or both lungs. The structure of the labeled training and test images
is shown in Figure 8.4.
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Figure 8.3 Workflows of CNN development to diagnose obstructed locations in the human lung

based on expiratory flow patterns: (a) ResNet50 and (b) YOLOv4 (Darknet53).

The velocity contours used for training and testing the two CNN-based models were
acquired at a selected cross-section (x = 0.1 m) for all CFD simulation cases. The cross-section
was selected based on two rationales: (i) the available locations in the chest where the airflow
velocity distributions can be measured by hyperpolarized MRI and (ii) the location that is
closer to the obstruction sites at 44 small airway terminals. Specifically, the closer the selected
cross-section and the obstruction sites are, the more negligible the dissipation effect will be,
and the more identifiable shifts of the airflow velocity distributions can be maintained due to
the variation in deeper-lung expiratory flow conditions induced by the obstruction. An exam-
ple of the expiratory velocity contour at x = 0.1 m can be found in Figure 8.3a and b. The
images were partitioned into training and testing sets for each obstruction class, with an

approximately 80 to 20% split and fivefold cross-validation.
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Figure 8.4 Data structure of the training and test images prepared using CFD.
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8.3.4 Results

8.3.4.1 (lassification Performance of the Modified ResNet50 Model

The performance of the modified ResNet50 model is visualized by both the histogram of
prediction scores (see Figure 8.5) and the confusion matrix heat map (see Figure 8.6).
The prediction scores of all test cases for left lung, right lung, and both lung obstructions
are shown in Figure 8.5a-c, respectively. The high score in each category indicates that
the model has a high certainty, and the case will be classified based on the highest pre-
diction score’s class. As shown in Figure 8.5a-c, most of the test cases have the highest
prediction scores in the class with the same obstruction locations, which indicates the
reliability of the prediction score system. Furthermore, as shown in Figure 8.6 and
Table 8.1, the testing dataset performance quantified by the average precision (AP) at
a threshold of 0.5 is:

o Left lung obstructed: AP = 89.27%
o Right lung obstructed: AP = 93.89%
o Both lungs obstructed: AP = 98.43%

The total accuracy converges to 95.1% after 20 epochs. Based on the testing result, the
modified ResNet50 model is a reliable classifier to identify whether the obstruction is in
the left lung, right lung, or both lungs with high sensitivity. The no obstruction case
(e.g. normal airways) was studied, and the scores for both obstructions, left obstructions,
and right obstructions are 0.3785, 0.3337, and 0.2878, respectively. Thus, the model is able
to distinguish between obstruction cases and the healthy no-obstruction case.

8.3.4.2 C(lassification Performance of the YOLOv4 Model

To validate the modified ResNet50 model for classification and compare the sensitivity of
AP to different CNN-based models, the YOLOv4 model was trained by conducting two tests
(see Table 8.1). In the first test (e.g. Test 1), to have a similar number of images for each class
during training, we randomly selected 153, 153, and 153 images for left, right, and both lung
obstructions, respectively. The values of precision (P), recall (R), and F1 score are listed in
Table 8.1. Specifically, precision (P) represents the ability of the classifier to identify relevant
data points that were classified as true and that were actually true. Recall (R) is described as
the ability of the classifier to find all relevant data points. Maximizing P often comes at the
expense of R and vice versa. The F1 score is considered as a parameter that can reflect both P
and R more objectively. Determining the F1 score is useful in this assessment to ensure opti-
mal precision (P) and recall scores (R) can be achieved. As shown in Table 8.1, the precision,
recall, and F1I score are 0.93, 0.94, and 0.93 at a threshold of 0.5 for Test 1, respectively. By
checking the AP for each class, the recognition of right lung (AP = 96.78%) and both lung
(AP = 93.85%) obstructions were not as good as recognition of the left lung obstruction
(AP = 100%). Therefore, the second test (e.g. Test 2) doubled the “right lung obstructed”
images (from 153 to 378) and tripled the “both lung obstructed” images (from 153 to
459). APs slightly increased for the two classes (e.g. from 96.78 to 97.74% for right lung
obstructions and from 93.85 to 96.29% for both lung obstructions). Thus, the overall
YOLOvV4 model trained in Test 2 is slightly better than Test 1, with P increased from
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Figure 8.5 Prediction scores for (a) left lung obstructions, (b) right lung obstructions, and (c) both
lungs obstructions.
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Table 8.1 Evaluation metrics of modified Resnet50 and YOLOv4 models.

Evaluation metrics ResNet50 test’(%) YOLOv4 test 01°(%) YOLOvV4 test 026(%)
Macro precision 93.86 93.00 96.00
P = TP/(TP + FP)

Macro recall 95.27 94.00 97.00
R = TP/(TP + FN)

F1 score 94.56 93.00 96.00
F1 = 2PR/(P+R)

Average precision (AP) 89.27 100% 100%
(Left lung obstructed)

Average precision (AP) 93.89 96.78 97.74
(Right lung obstructed)

Average precision (AP) 98.42 93.85 96.29

(Both lungs obstructed)

TP, true positive; FP, false positive; FN, false negative.

% ResNet50 Test : 153 images for left, 378 images for right, and 459 images for both lung obstructions.
®YOLO Test 01 : 153 images for left, 153 images for right, and 153 images for both lung obstructions.
“YOLO Test 02 : 153 images for left, 378 images for right, and 459 images for both lung obstructions.

0.93 to 0.96, R increased from 0.94 to 0.97, and F1 score increased from 0.93 to 0.96. The
comparison of evaluation results between the modified ResNet50 and YOLOv4 models
summarized in Table 8.1 shows that both models can be used as classifiers for the obstruc-
tion location identifications. The modified ResNet50 model was coded and compiled in
Keras 2.4.3. It was run on Windows Operating System with GPU (GeForce RTX 2080 with
16 GB-VRAM). The training computation is approximately 12 seconds per epoch with
19 minutes and 10 seconds in total. The YOLOv4-based CNN model was compiled in
Microsoft Visual Studio 2019 (Microsoft Corporation, Albuquerque, NM, USA) and run
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on Windows Operating System with GPU (GeForce GTX 1660 Ti with 16 GB-VRAM),
CUDNN_HALF, and OpenCV for accelerating the training. For test02, the training compu-
tation is approximately 10 seconds per iteration with batch-size of 64, subdivisions (or mini
batch-size) of 64, and 6000 iterations in total; therefore, the training computation perfor-
mance is approximately 130 seconds per epoch with 18 hours and 17 minutes in total.
Considering the computational costs, the modified ResNet50 is more efficient than YOLOv4.

8.3.4.3 Post-Processing Via Grad-CAM Model and HSV

As shown in Figure 8.7, the Grad-CAM model is combined with the modified ResNet50
model to output the heat map visualization of the important region. The HSV thresholding
technique is applied to the heat map plot of the Grad-CAM model. The HSV color space is a
cylindrical coordinate representation of points in an RGB color model. It represents the
human perception using Hue (the dominant color as perceived by an observer), Saturation
(the amount of white light mixed with a Hue), and Value (the chromatic notion of inten-
sity). The highlighted regions were detected by filtering out the color that suggests a low
correlation with the obstructions. As shown in Figure 8.8, the highlighted regions for cases
within the same obstruction class (e.g. left lung, right lung, or both lungs) were blended
with the same weight to assist in finding the most important regions to identify different
obstructions. The brightness of the color shows the importance of the region for classifica-
tion. It can be observed that the area of the bright red region for both lung obstructions is
larger than those for left or right lung obstruction cases. It indicates that the determination
of both lung obstructions requires more information.

\ "' C

Figure 8.7 HSV thresholding technique procedure: (@) CFD model output, (b) Grad-CAM model output,
(c) high correlation region for obstruction.

(a) (b) (c)

Figure 8.8 Blended highlight regions of construction for (a) left lung, (b) right lung, and (c) both lungs.
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8.3.5 Conclusion

The prototype of a novel, effective, and noninvasive tool for early diagnosis of deeper airway
obstructions has been developed using CFD and two CNN-based models. The important
regions have been determined by Grad-CAM and HSV thresholding techniques and con-
firmed by the Pearson correlation coefficient calculations between CFD velocity contours.
The reason for the falsely classified cases was analyzed based on the comparisons of fun-
damental airflow dynamics in the intrathoracic region. Key conclusions are summarized
as follows:

1) The two CNN-based models (e.g. modified ResNet50 and YOLOv4) can detect small air-
way obstruction locations based on measurable expiratory airflow patterns in the
intrathoracic region well with all evaluation scores higher than 93%, including precision,
recall, FI score, and average precisions. YOLOV4 is slightly better in classification per-
formance than the modified ResNet50 but requires a higher computational cost. Fur-
thermore, the results of the two CNN-based models validate each other very well.
The bagging or boosting ensemble method can be applied to achieve better overall pre-
diction accuracy.

2) The comparisons of expiratory velocity contours show minor flow field pattern shifts
with the variations of obstruction sites and demonstrate the necessity of employing
CNN algorithms for the effective diagnosis of obstructions. In addition, the Pearson cor-
relation coefficients show much lower similarities of the velocity contours in the highly
correlated region identified by CNN-based models than the velocity contours of the
whole cross-section, which explains why the Grad-CAM and HSV techniques rely more
on the high-correlated regions to identify the obstruction locations.

This prototype of the diagnostic algorithms paves the way for the development of nonin-
vasive and effective diagnostic tools with classification algorithms to effectively diagnose
COPD at an early stage and provide high-resolution information for precise treatment
(e.g. targeted drug delivery to the identified obstruction sites) with better therapeutic out-
comes. No CFD knowledge is needed for users (e.g. physicians) to use the classification algo-
rithm, which increases the transformative impact of the CNN-based models for clinical
practice.

8.4 Limitations and Future Work

The present study developed a prototype of the diagnostic algorithm to identify lung
obstruction locations via the expiratory airflow distributions in the trachea, integrating
CFD and CNN. Limitations of the study are listed as follows:

1) Only one subject-specific TB tree configuration was employed in the CFD simulation for
the preparation of training and test images, which did not consider the intersubject var-
iability effect and the influence of airway deformation kinematics.

2) Obstructions were assumed to only appear in either the left lung, the right lung, or both
lungs in the training and test images, which could be more specific to different lobes.
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3) The airway was assumed to be rigid, which neglected the effect of airway expansion and
contraction in the real-world breathing process.
4) The input images were produced by the CFD instead of real-world MRI images.

To address the limitations of the present study and further develop a diagnosis algorithm
that can be ready for clinical practice, future work includes:

1) More subject-specific airway configurations with airway deformation kinematics will be
obtained and employed in the CFD simulations to prepare the training and test images
with the effect of intersubject variabilities, which will enhance the generalized predict-
ability of the CNN algorithm.

2) Lobe-specific obstruction diagnosis will be achieved by improving the training process of
the two CNN-based models.

3) Noises and missing parts could be added to mimic the real-world MRI images first and
then replaced by hyperpolarized MRI images to further improve the accuracy and real-
ism of the CNN algorithms.

The long-term goal is to provide physicians with a computationally efficient diagnosis
algorithm, which can identify the obstruction locations in human lungs based on the pul-
monary airflow velocity distributions that are measurable using hyperpolarized MRI
(Salerno et al. 2001; Walkup and Woods 2014; Roos et al. 2015; Walkup et al. 2016).
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